asahi417's picture
model update
f88bca6
|
raw
history blame
7.85 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: ko
datasets:
  - lmqg/qg_koquad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: >-
      1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로
      출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.
    example_title: Question Generation Example 1
  - text: >-
      백신이 없기때문에 예방책은 <hl> 살충제 <hl> 를 사용하면서 서식 장소(찻찬 받침, 배수로, 고인 물의 열린 저장소, 버려진
      타이어 등)의 수를 줄임으로써 매개체를 통제할 수 있다.
    example_title: Question Generation Example 2
  - text: <hl> 원테이크 촬영 <hl> 이기 때문에  사람이 실수를 하면 처음부터 다시 찍어야 하는 상황이 발생한다.
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/mbart-large-cc25-koquad
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_koquad
          type: default
          args: default
        metrics:
          - name: BLEU4
            type: bleu4
            value: 10.92
          - name: ROUGE-L
            type: rouge-l
            value: 27.76
          - name: METEOR
            type: meteor
            value: 30.23
          - name: BERTScore
            type: bertscore
            value: 83.89
          - name: MoverScore
            type: moverscore
            value: 82.95
          - name: QAAlignedF1Score (BERTScore) [Gold Answer]
            type: qa_aligned_f1_score_bertscore_gold_answer
            value: 88.18
          - name: QAAlignedRecall (BERTScore) [Gold Answer]
            type: qa_aligned_recall_bertscore_gold_answer
            value: 88.15
          - name: QAAlignedPrecision (BERTScore) [Gold Answer]
            type: qa_aligned_precision_bertscore_gold_answer
            value: 88.22
          - name: QAAlignedF1Score (MoverScore) [Gold Answer]
            type: qa_aligned_f1_score_moverscore_gold_answer
            value: 85.53
          - name: QAAlignedRecall (MoverScore) [Gold Answer]
            type: qa_aligned_recall_moverscore_gold_answer
            value: 85.46
          - name: QAAlignedPrecision (MoverScore) [Gold Answer]
            type: qa_aligned_precision_moverscore_gold_answer
            value: 85.62

Model Card of lmqg/mbart-large-cc25-koquad

This model is fine-tuned version of facebook/mbart-large-cc25 for question generation task on the lmqg/qg_koquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ko", model="lmqg/mbart-large-cc25-koquad")

# model prediction
questions = model.generate_q(list_context="1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.", list_answer="남부군")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-koquad")
output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")

Evaluation

Score Type Dataset
BERTScore 83.89 default lmqg/qg_koquad
Bleu_1 26.92 default lmqg/qg_koquad
Bleu_2 19.57 default lmqg/qg_koquad
Bleu_3 14.52 default lmqg/qg_koquad
Bleu_4 10.92 default lmqg/qg_koquad
METEOR 30.23 default lmqg/qg_koquad
MoverScore 82.95 default lmqg/qg_koquad
ROUGE_L 27.76 default lmqg/qg_koquad
  • Metric (Question & Answer Generation): QAG metrics are computed with the gold answer and generated question on it for this model, as the model cannot provide an answer. raw metric file
Score Type Dataset
QAAlignedF1Score (BERTScore) 88.18 default lmqg/qg_koquad
QAAlignedF1Score (MoverScore) 85.53 default lmqg/qg_koquad
QAAlignedPrecision (BERTScore) 88.22 default lmqg/qg_koquad
QAAlignedPrecision (MoverScore) 85.62 default lmqg/qg_koquad
QAAlignedRecall (BERTScore) 88.15 default lmqg/qg_koquad
QAAlignedRecall (MoverScore) 85.46 default lmqg/qg_koquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_koquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: facebook/mbart-large-cc25
  • max_length: 512
  • max_length_output: 32
  • epoch: 6
  • batch: 4
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 16
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}