SetFit with BAAI/bge-base-en-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-base-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
5
  • '###Instruction: Multi-class classification, answer with one of the labels: [delete, keep, speedy delete, comment] : ###Input: Q9014435: Template:Rfd links Merged with Q4063392 . Jssfrk ([[User talk:Jssfrk
1
  • '###Instruction: Multi-class classification, answer with one of the labels: [delete, keep, speedy delete, comment] : ###Input: Q6995874: Neraidochori (Q6995874) : village in Thessaly, Greece : ( [MASK]
4
  • '###Instruction: Multi-class classification, answer with one of the labels: [delete, keep, speedy delete, comment] : ###Input: Q12640552: Template:Rfd links Empty, leftover from merging.-- Pütz M. ([[User talk:Pütz M.
2
  • '###Instruction: Multi-class classification, answer with one of the labels: [delete, keep, speedy delete, comment] : ###Input: Q32113012: Category:Dames, Special Class of the Order of the Starry Cross (Q32113012) : Wikimedia category : ( [MASK]
0
  • '###Instruction: Multi-class classification, answer with one of the labels: [delete, keep, speedy delete, comment] : ###Input: Q755378: Beia (Q755378) : village in Brașov County, Romania : ( [MASK]
3
  • "###Instruction: Multi-class classification, answer with one of the labels: [delete, keep, speedy delete, comment] : ###Input: Q19622665: hydrazine sulfate (Q19622665) : chemical compound : ( [MASK]

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("research-dump/bge-base-en-v1.5_wikidata_entity_outcome_prediction_v1")
# Run inference
preds = model("###Instruction: Multi-class classification, answer with one of the labels: [delete, keep, speedy delete, comment] : ###Input:  Q16629320: Template:Rfd links Merged with Q15628951 , via The Game  -- Moxfyre ([[User talk:Moxfyre| int:Talkpagelinktext ]]) 18:14, 2 July 2014 (UTC)")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 29 52.91 991
Label Training Sample Count
0 1
1 514
2 12
3 1
4 39
5 133

Training Hyperparameters

  • batch_size: (8, 2)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (0.0001, 0.0001)
  • head_learning_rate: 5e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: True
  • use_amp: True
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0001 1 0.1493 -
0.0571 500 0.1114 0.1701
0.1143 1000 0.0474 0.1838
0.1714 1500 0.0418 0.1427
0.2286 2000 0.0317 0.1665
0.2857 2500 0.0296 0.1820
0.3429 3000 0.022 0.1714
0.4 3500 0.0245 0.1899
0.4571 4000 0.0222 0.1951
0.5143 4500 0.0176 0.2051
0.5714 5000 0.0134 0.2062
0.6286 5500 0.0099 0.2131
0.6857 6000 0.0086 0.2020
0.7429 6500 0.009 0.1906
0.8 7000 0.0042 0.1960
0.8571 7500 0.0032 0.1942
0.9143 8000 0.0028 0.1941
0.9714 8500 0.0035 0.1951

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.1
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
5
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for research-dump/bge-base-en-v1.5_wikidata_entity_outcome_prediction_v1

Finetuned
(325)
this model