Aurelien-Morgan-Bot's picture
v0.24 - 2025-04-05 01:49:20 UTC - retrain-pipelines v0.1.1 - Upload model and tokenizer with README.
0dc9460 verified
---
# @see https://github.com/huggingface/hub-docs/blob/main/modelcard.md
# @see https://huggingface.co/docs/huggingface_hub/guides/model-cards#update-metadata
# @see https://huggingface.co/docs/hub/model-cards#model-card-metadata
version: '0.24'
timestamp: '20250405_014920180_UTC'
model_name: retrain-pipelines Function Caller
base_model: unsloth/Qwen2.5-1.5B
base_model_relation: adapter
library_name: transformers
datasets:
- retrain-pipelines/func_calls_ds
license: apache-2.0
language:
- en
task_categories:
- text2text-generation
tags:
- retrain-pipelines
- function-calling
- LLM Agent
- code
- unsloth
thumbnail: https://cdn-avatars.huggingface.co/v1/production/uploads/651e93137b2a2e027f9e55df/96hzBved0YMjCq--s0kad.png
# @see https://huggingface.co/docs/hub/models-widgets#enabling-a-widget
# @see https://huggingface.co/docs/hub/models-widgets-examples
# @see https://huggingface.co/docs/hub/en/model-cards#specifying-a-task--pipelinetag-
pipeline_tag: text2text-generation
widget:
- text: >-
Hello
example_title: No function call
output:
text: '[]'
- text: >-
Is 49 a perfect square?
example_title: Perfect square
output:
text: '[{"name": "is_perfect_square", "arguments": {"num": 49}}]'
mf_run_id: '95'
# @see https://huggingface.co/docs/huggingface_hub/guides/model-cards#include-evaluation-results
# @see https://huggingface.co/docs/huggingface_hub/main/en/package_reference/cards#huggingface_hub.EvalResult
model-index:
- name: retrain-pipelines Function Caller
results:
- task:
type: text2text-generation
name: Text2Text Generation
dataset:
name: retrain-pipelines Function Calling
type: retrain-pipelines/func_calls_ds
split: validation
revision: acf61743e7c3e846b74162444f86e65852d2bbf6
metrics:
- type: precision
value: 0.7742409706115723
- type: recall
value: 0.7735999822616577
- type: f1
value: 0.7736773490905762
- type: jaccard
value: 0.7556698322296143
---
<div
class="
p-6 mb-4 rounded-lg
pt-6 sm:pt-9
bg-gradient-to-b
from-purple-500
dark:from-purple-500/20
"
>
<div
class="
pl-4 rounded-lg
border-2 border-gray-100
bg-gradient-to-b
from-purple-500
dark:from-purple-500/20
"
>
<b>retrain-pipelines Function Caller</b>
</div>
<code>version 0.24</code> - <code>2025-04-05 01:49:20 UTC</code>
(retraining
<a target="_blank"
href="https://huggingface.co/retrain-pipelines/function_caller_lora/tree/retrain-pipelines_source-code/v0.24_20250405_014920180_UTC">source-code</a> |
<a target="_blank"
href="https://huggingface.co/spaces/retrain-pipelines/online_pipeline_card_renderer/?model_repo_id=retrain-pipelines/function_caller_lora&version_id=v0.24_20250405_014920180_UTC">pipeline-card</a>)
</div>
Training dataset&nbsp;:
- <code>retrain-pipelines/func_calls_ds v0.23</code>
(<a href="https://huggingface.co/datasets/retrain-pipelines/func_calls_ds/blob/acf61743e7c3e846b74162444f86e65852d2bbf6/README.md"
target="_blank">acf6174</a> -
2025-04-04 18:05:46 UTC)
<br />
<img alt="" src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fhuggingface.co%2Fapi%2Fdatasets%2Fretrain-pipelines/func_calls_ds&amp;query=%24.downloads&amp;logo=huggingface&amp;label=downloads" class="inline-block" />&nbsp;<img alt="" src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fhuggingface.co%2Fapi%2Fdatasets%2Fretrain-pipelines/func_calls_ds&amp;query=%24.likes&amp;logo=huggingface&amp;label=likes" class="inline-block" />
Base model&nbsp;:
- <code>unsloth/Qwen2.5-1.5B</code>
(<a href="https://huggingface.co/unsloth/Qwen2.5-1.5B/blob/2d0a015faee2c1af360a6725a30c4d7a258ac4d4/README.md"
target="_blank">2d0a015</a> -
2025-02-06 02:32:14 UTC)
<br />
<img alt="" src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fhuggingface.co%2Fapi%2Fmodels%2Funsloth/Qwen2.5-1.5B&amp;query=%24.downloads&amp;logo=huggingface&amp;label=downloads" class="inline-block" />&nbsp;<img alt="" src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fhuggingface.co%2Fapi%2Fmodels%2Funsloth/Qwen2.5-1.5B&amp;query=%24.likes&amp;logo=huggingface&amp;label=likes" class="inline-block" /><br />
arxiv&nbsp;:<br />
- <code><a href="https://huggingface.co/papers/2407.10671"
target="_blank">2407.10671</a></code><br />
The herein LoRa adapter can for instance be used as follows&nbsp;:<br />
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import device, cuda
repo_id = "retrain-pipelines/function_caller_lora"
revision = "<model_revision_commit_hash>"
model = AutoModelForCausalLM.from_pretrained(
repo_id, revision=revision, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(
repo_id, revision=revision, torch_dtype="auto", device_map="auto")
device = device("cuda" if cuda.is_available() else "cpu")
def generate_tool_calls_list(query, max_new_tokens=400) -> str:
formatted_query = tokenizer.chat_template.format(query, "")
inputs = tokenizer(formatted_query, return_tensors="pt").input_ids.to(device)
outputs = model.generate(inputs, max_new_tokens=max_new_tokens, do_sample=False)
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return generated_text[len(formatted_query):].strip()
generate_tool_calls_list("Is 49 a perfect square ?")
```
<br />
<br />
<div
class="
p-6 mb-4 rounded-lg
pt-6 sm:pt-9
px-4
pb-1
bg-gradient-to-t
from-purple-500
dark:from-purple-500/20
"
>
<div
class="
p-6 mb-4 rounded-lg
border-2 border-gray-100
pt-6 sm:pt-9
bg-gradient-to-t
from-purple-500
dark:from-purple-500/20
"
>
Powered by
<code><a target="_blank"
href="https://github.com/aurelienmorgan/retrain-pipelines">retrain-pipelines
0.1.1</a></code> -
<code>Run by <a target="_blank" href="https://huggingface.co/Aurelien-Morgan-Bot">Aurelien-Morgan-Bot</a></code> -
<em><b>UnslothFuncCallFlow</b></em> - mf_run_id&nbsp;: <code>95</code>
</div>
</div>