revtestuser's picture
Add new SentenceTransformer model.
711b252 verified
|
raw
history blame
29.8 kB
---
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Chevron regularly conducts employee surveys throughout the year
to assess the health of the company’s culture, allowing them to gain insights
into employee well-being.
sentences:
- What was the net cash provided by operating activities for the year ended December
31, 2023?
- How often does Chevron conduct employee surveys to assess the health of its culture?
- What were the total future minimum lease payments for Comcast's operating leases
as of December 31, 2023?
- source_sentence: Gross margin for the fiscal year decreased 250 basis points to
43.5% primarily driven by higher product costs, higher markdowns and unfavorable
changes in foreign currency exchange rates, partially offset by strategic pricing
actions.
sentences:
- How does the company maintain high standards of product quality and safety?
- What were the main factors that negatively impacted NIKE's gross margin in fiscal
2023?
- What was the growth rate of Visa Inc.'s commercial payments volume internationally
between 2021 and 2022?
- source_sentence: Mr. Teter holds a B.S. degree in Mechanical Engineering from the
University of California at Davis and a J.D. degree from Stanford Law School.
sentences:
- What degrees does Timothy S. Teter hold and from which institutions?
- What regulations are in place in Europe regarding interactions between pharmaceutical
companies and physicians?
- What economic factors particularly affected Garmin's consumer behavior in 2023?
- source_sentence: Our Office of Diversity, Equity and Inclusion supports our focus
on associate diversity, supplier diversity, and engagement with our communities.
sentences:
- What are the three segments of alcohol ready-to-drink beverages the company is
focusing on?
- How much net cash was provided by operating activities in 2023?
- What is the focus of The Home Depot's Office of Diversity, Equity and Inclusion?
- source_sentence: Net cash used in financing activities totaled $2,614 in 2023, compared
to $4,283 in 2022.
sentences:
- What was the net cash used in financing activities in 2023 and how does it compare
to 2022?
- What are Chipotle's key strategies for business growth as discussed in their strategy?
- What are the primary regulatory authorities that supervise and regulate JPMorgan
Chase in the U.S.?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6971428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8685714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6971428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2733333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1737142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6971428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.82
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8685714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.803607128355984
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.770687641723356
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.77485834386751
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6957142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8228571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8642857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6957142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2742857142857143
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17285714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0904285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6957142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8228571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8642857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.802840202489837
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7701360544217687
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7744106258164117
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8185714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8528571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8985714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17057142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08985714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8185714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8528571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8985714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.795190594370522
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7619773242630383
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7664081914180308
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6685714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8128571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8428571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8942857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6685714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27095238095238094
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16857142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08942857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6685714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8128571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8428571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8942857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7840862792892018
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7486655328798184
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7527149388922518
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6471428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7828571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8242857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8685714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6471428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26095238095238094
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16485714285714284
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08685714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6471428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7828571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8242857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8685714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7601900384958588
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.725268707482993
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7302983967510448
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("revtestuser/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Net cash used in financing activities totaled $2,614 in 2023, compared to $4,283 in 2022.',
'What was the net cash used in financing activities in 2023 and how does it compare to 2022?',
"What are Chipotle's key strategies for business growth as discussed in their strategy?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6971 |
| cosine_accuracy@3 | 0.82 |
| cosine_accuracy@5 | 0.8686 |
| cosine_accuracy@10 | 0.9057 |
| cosine_precision@1 | 0.6971 |
| cosine_precision@3 | 0.2733 |
| cosine_precision@5 | 0.1737 |
| cosine_precision@10 | 0.0906 |
| cosine_recall@1 | 0.6971 |
| cosine_recall@3 | 0.82 |
| cosine_recall@5 | 0.8686 |
| cosine_recall@10 | 0.9057 |
| cosine_ndcg@10 | 0.8036 |
| cosine_mrr@10 | 0.7707 |
| **cosine_map@100** | **0.7749** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6957 |
| cosine_accuracy@3 | 0.8229 |
| cosine_accuracy@5 | 0.8643 |
| cosine_accuracy@10 | 0.9043 |
| cosine_precision@1 | 0.6957 |
| cosine_precision@3 | 0.2743 |
| cosine_precision@5 | 0.1729 |
| cosine_precision@10 | 0.0904 |
| cosine_recall@1 | 0.6957 |
| cosine_recall@3 | 0.8229 |
| cosine_recall@5 | 0.8643 |
| cosine_recall@10 | 0.9043 |
| cosine_ndcg@10 | 0.8028 |
| cosine_mrr@10 | 0.7701 |
| **cosine_map@100** | **0.7744** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6871 |
| cosine_accuracy@3 | 0.8186 |
| cosine_accuracy@5 | 0.8529 |
| cosine_accuracy@10 | 0.8986 |
| cosine_precision@1 | 0.6871 |
| cosine_precision@3 | 0.2729 |
| cosine_precision@5 | 0.1706 |
| cosine_precision@10 | 0.0899 |
| cosine_recall@1 | 0.6871 |
| cosine_recall@3 | 0.8186 |
| cosine_recall@5 | 0.8529 |
| cosine_recall@10 | 0.8986 |
| cosine_ndcg@10 | 0.7952 |
| cosine_mrr@10 | 0.762 |
| **cosine_map@100** | **0.7664** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6686 |
| cosine_accuracy@3 | 0.8129 |
| cosine_accuracy@5 | 0.8429 |
| cosine_accuracy@10 | 0.8943 |
| cosine_precision@1 | 0.6686 |
| cosine_precision@3 | 0.271 |
| cosine_precision@5 | 0.1686 |
| cosine_precision@10 | 0.0894 |
| cosine_recall@1 | 0.6686 |
| cosine_recall@3 | 0.8129 |
| cosine_recall@5 | 0.8429 |
| cosine_recall@10 | 0.8943 |
| cosine_ndcg@10 | 0.7841 |
| cosine_mrr@10 | 0.7487 |
| **cosine_map@100** | **0.7527** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6471 |
| cosine_accuracy@3 | 0.7829 |
| cosine_accuracy@5 | 0.8243 |
| cosine_accuracy@10 | 0.8686 |
| cosine_precision@1 | 0.6471 |
| cosine_precision@3 | 0.261 |
| cosine_precision@5 | 0.1649 |
| cosine_precision@10 | 0.0869 |
| cosine_recall@1 | 0.6471 |
| cosine_recall@3 | 0.7829 |
| cosine_recall@5 | 0.8243 |
| cosine_recall@10 | 0.8686 |
| cosine_ndcg@10 | 0.7602 |
| cosine_mrr@10 | 0.7253 |
| **cosine_map@100** | **0.7303** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 44.91 tokens</li><li>max: 246 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.43 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Certain provisions of the final rule become effective on April 1, 2024, but the majority of the final rule’s operative provisions (including the revisions to the definition of “limited purpose bank”) become effective on January 1, 2026, with additional data collection and reporting requirements becoming effective on January 1, 2027.</code> | <code>What are the effective dates for the main provisions and additional data collection and reporting requirements of the final rule impacting AENB's compliance obligations?</code> |
| <code>Our total revenue for 2023 was $134.90 billion, an increase of 16% compared to 2022.</code> | <code>What was the total revenue for the year 2023 and the percentage increase from 2022?</code> |
| <code>As of December 31, 2023, our domestic Chief Medical Officer leads a team of 22 nephrologists in our physician leadership team as part of our domestic Office of the Chief Medical Officer.</code> | <code>How many physicians are part of the domestic Office of the Chief Medical Officer at DaVita as of December 31, 2023?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8122 | 10 | 1.6288 | - | - | - | - | - |
| 0.9746 | 12 | - | 0.7384 | 0.7485 | 0.7508 | 0.7013 | 0.7561 |
| 1.6244 | 20 | 0.6896 | - | - | - | - | - |
| 1.9492 | 24 | - | 0.7499 | 0.7621 | 0.7676 | 0.7220 | 0.7704 |
| 2.4365 | 30 | 0.4965 | - | - | - | - | - |
| 2.9239 | 36 | - | 0.7529 | 0.7669 | 0.7739 | 0.7302 | 0.7754 |
| 3.2487 | 40 | 0.415 | - | - | - | - | - |
| **3.8985** | **48** | **-** | **0.7527** | **0.7664** | **0.7744** | **0.7303** | **0.7749** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->