Llama3-portuguese-luana-8b-instruct
This model was trained with a superset of 290,000 chat in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Llama3 8B, the model was adjusted mainly for chat.
How to use
FULL MODEL : A100
HALF MODEL: L4
8bit or 4bit : T4 or V100
You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models (even smaller models like 8b) to perform much better.
!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("rhaymison/Llama3-portuguese-luana-8b-instruct", device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/Llama3-portuguese-luana-8b-instruct")
model.eval()
You can use with Pipeline.
from transformers import pipeline
pipe = pipeline("text-generation",
model=model,
tokenizer=tokenizer,
do_sample=True,
max_new_tokens=256,
num_beams=2,
temperature=0.3,
top_k=50,
top_p=0.95,
early_stopping=True,
pad_token_id=tokenizer.eos_token_id,
)
def format_prompt(question:str):
system_prompt = "Abaixo estรก uma instruรงรฃo que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
return f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{ system_prompt }<|eot_id|><|start_header_id|>user<|end_header_id|>
{ question }<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
prompt = format_prompt("Me explique quem eram os Romanos")
result = pipe(prompt)
result[0]["generated_text"].split("assistant<|end_header_id|>")[1]
#Os romanos eram um povo antigo que habitava a penรญnsula italiana, particularmente na regiรฃo que hoje รฉ conhecida como Itรกlia. Eles estabeleceram o Impรฉrio Romano,
#que se tornou uma das maiores e mais poderosas civilizaรงรตes da histรณria. Os romanos eram conhecidos por suas conquistas militares, sua arquitetura e engenharia
#impressionantes e sua influรชncia duradoura na cultura ocidental.
#Os romanos eram uma sociedade complexa que consistia em vรกrias classes sociais, incluindo senadores, cavaleiros, plebeus e escravos.
#Eles tinham um sistema de governo baseado em uma repรบblica, onde o poder era dividido entre o Senado e a Assemblรฉia do Povo.
#Os romanos eram conhecidos por suas conquistas militares, que os levaram a expandir seu impรฉrio por toda a Europa, รsia e รfrica.
#Eles estabeleceram uma rede de estradas, pontes e outras estruturas que facilitaram a comunicaรงรฃo e o comรฉrcio.
If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. For the complete model in colab you will need the A100. If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.
4bits example
from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=bnb_config,
device_map={"": 0}
)
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the ๐ Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 68.15 |
ENEM Challenge (No Images) | 69 |
BLUEX (No Images) | 51.74 |
OAB Exams | 47.56 |
Assin2 RTE | 89.24 |
Assin2 STS | 72.87 |
FaQuAD NLI | 68.94 |
HateBR Binary | 85.93 |
PT Hate Speech Binary | 64.16 |
tweetSentBR | 63.91 |
Comments
Any idea, help or report will always be welcome.
email: [email protected]
- Downloads last month
- 26
Model tree for rhaymison/Llama3-portuguese-luana-8b-instruct
Base model
meta-llama/Meta-Llama-3-8B-InstructDataset used to train rhaymison/Llama3-portuguese-luana-8b-instruct
Space using rhaymison/Llama3-portuguese-luana-8b-instruct 1
Evaluation results
- accuracy on ENEM Challenge (No Images)Open Portuguese LLM Leaderboard69.000
- accuracy on BLUEX (No Images)Open Portuguese LLM Leaderboard51.740
- accuracy on OAB ExamsOpen Portuguese LLM Leaderboard47.560
- f1-macro on Assin2 RTEtest set Open Portuguese LLM Leaderboard89.240
- pearson on Assin2 STStest set Open Portuguese LLM Leaderboard72.870
- f1-macro on FaQuAD NLItest set Open Portuguese LLM Leaderboard68.940
- f1-macro on HateBR Binarytest set Open Portuguese LLM Leaderboard85.930
- f1-macro on PT Hate Speech Binarytest set Open Portuguese LLM Leaderboard64.160
- f1-macro on tweetSentBRtest set Open Portuguese LLM Leaderboard63.910