|
--- |
|
language: |
|
- pt |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- mixtral |
|
- portuguese |
|
- portugues |
|
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 |
|
datasets: |
|
- rhaymison/superset |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: Mistral-8x7b-portuguese-luana |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: ENEM Challenge (No Images) |
|
type: eduagarcia/enem_challenge |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 69.63 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-8x7b-portuguese-luana |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BLUEX (No Images) |
|
type: eduagarcia-temp/BLUEX_without_images |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 59.11 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-8x7b-portuguese-luana |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: OAB Exams |
|
type: eduagarcia/oab_exams |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 49.61 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-8x7b-portuguese-luana |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 RTE |
|
type: assin2 |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 61.21 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-8x7b-portuguese-luana |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 STS |
|
type: eduagarcia/portuguese_benchmark |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: pearson |
|
value: 79.95 |
|
name: pearson |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-8x7b-portuguese-luana |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: FaQuAD NLI |
|
type: ruanchaves/faquad-nli |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 78.6 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-8x7b-portuguese-luana |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HateBR Binary |
|
type: ruanchaves/hatebr |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 72.42 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-8x7b-portuguese-luana |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: PT Hate Speech Binary |
|
type: hate_speech_portuguese |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 73.01 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-8x7b-portuguese-luana |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: tweetSentBR |
|
type: eduagarcia/tweetsentbr_fewshot |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 50.9 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-8x7b-portuguese-luana |
|
name: Open Portuguese LLM Leaderboard |
|
--- |
|
|
|
# Mistral-8x7b-Quantized-portuguese-luanaa |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/24.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
</p> |
|
|
|
|
|
This model was trained with a superset of 300,000 instructions in Portuguese. |
|
The model comes to help fill the gap in models in Portuguese. |
|
Tuned from the Mistral 8x7b and quantized in 4bit for Portuguese, the model was adjusted mainly for instructional tasks. |
|
|
|
# How to use |
|
|
|
### A100 GPU |
|
|
|
You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. |
|
Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. |
|
Important points like these help models (even smaller models like 7b) to perform much better. |
|
|
|
```python |
|
!pip install -q -U transformers |
|
!pip install -q -U accelerate |
|
!pip install -q -U bitsandbytes |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
model = AutoModelForCausalLM.from_pretrained("rhaymison/Mistral-8x7b-Quantized-portuguese-luana", device_map= {"": 0}) |
|
tokenizer = AutoTokenizer.from_pretrained("rhaymison/Mistral-8x7b-Quantized-portuguese-luana") |
|
model.eval() |
|
|
|
``` |
|
|
|
You can use with Pipeline but in this example i will use such as Streaming |
|
```python |
|
|
|
inputs = tokenizer([f"""<s>[INST] Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. |
|
Escreva uma resposta que complete adequadamente o pedido. |
|
### instrução: aja como um professor de matemática e me explique porque 2 + 2 = 4. |
|
[/INST]"""], return_tensors="pt") |
|
|
|
inputs.to(model.device) |
|
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=200) |
|
|
|
``` |
|
|
|
If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. |
|
For the complete model in colab you will need the A100. |
|
If you want to use 4bits or 8bits, T4 or L4 will already solve the problem. |
|
|
|
# 4bits example |
|
|
|
```python |
|
from transformers import BitsAndBytesConfig |
|
import torch |
|
nb_4bit_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
quantization_config=bnb_config, |
|
device_map={"": 0} |
|
) |
|
|
|
``` |
|
|
|
### LangChain |
|
|
|
Extracting a langChain conversation with a drug petition document as context. |
|
|
|
* Human: Bom dia. Me informe quais medicamentos são solicitados no texto. Informe também a posologia e o período de tratamento. |
|
|
|
* Luana: Olá! No texto são solicitados os medicamentos DULOXETINA 30mg,PREGABALINA 100mg ROSUVASTATINA 10mg. |
|
A posologia e o período de tratamento não são especificados, pois isso deve ser indicado periodicamente pelo médico. |
|
|
|
* Human: Perfeito. E qual é o valor da causa informado no documento? |
|
|
|
* Luana: O valor da causa informado no documento é R$ 6.132,00 (seis mil cento e três). |
|
|
|
* Human: Foi mencionado no texto alguma lei? |
|
|
|
* Luana: Sim, a Lei Complementar nº 80/94 é mencionada no texto. Ela se refere às prerrogativas institucionais da Defensoria Pública, |
|
incluindo a intimação pessoal de seus membros, a contagem em dobro dos prazos processuais, a manifestação por cotas nos autos e a dispensa da procuração. |
|
|
|
* Human: Perfeito! Muito obrigado pela ajuda. Por hora é somente isso =] |
|
|
|
* Luana: Foi um prazer ajudar! Se você tiver outras dúvidas ou necessitar de mais informações, não hesite em perguntar. Tenha um bom dia! |
|
|
|
|
|
# Open Portuguese LLM Leaderboard Evaluation Results |
|
|
|
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/Mistral-8x7b-portuguese-luana) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) |
|
|
|
| Metric | Value | |
|
|--------------------------|---------| |
|
|Average |**66.05**| |
|
|ENEM Challenge (No Images)| 69.63| |
|
|BLUEX (No Images) | 59.11| |
|
|OAB Exams | 49.61| |
|
|Assin2 RTE | 61.21| |
|
|Assin2 STS | 79.95| |
|
|FaQuAD NLI | 78.60| |
|
|HateBR Binary | 72.42| |
|
|PT Hate Speech Binary | 73.01| |
|
|tweetSentBR | 50.90| |
|
|
|
### Comments |
|
|
|
Any idea, help or report will always be welcome. |
|
|
|
email: [email protected] |
|
|
|
<div style="display:flex; flex-direction:row; justify-content:left"> |
|
<a href="https://www.linkedin.com/in/heleno-betini-2b3016175/" target="_blank"> |
|
<img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white"> |
|
</a> |
|
<a href="https://github.com/rhaymisonbetini" target="_blank"> |
|
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white"> |
|
</a> |
|
</div> |
|
|
|
|
|
|