rhaymison's picture
Update README.md
ee625f5 verified
|
raw
history blame
8.91 kB
metadata
language:
  - pt
license: apache-2.0
library_name: transformers
tags:
  - Misral
  - Portuguese
  - 7b
  - chat
  - portugues
base_model: Qwen/Qwen1.5-7B
datasets:
  - rhaymison/superset
pipeline_tag: text-generation
model-index:
  - name: Qwen-portuguese-luana-7b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: ENEM Challenge (No Images)
          type: eduagarcia/enem_challenge
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 58.36
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Qwen-portuguese-luana-7b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BLUEX (No Images)
          type: eduagarcia-temp/BLUEX_without_images
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 48.12
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Qwen-portuguese-luana-7b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: OAB Exams
          type: eduagarcia/oab_exams
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 42.73
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Qwen-portuguese-luana-7b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 RTE
          type: assin2
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 81.05
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Qwen-portuguese-luana-7b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 STS
          type: eduagarcia/portuguese_benchmark
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: pearson
            value: 74.25
            name: pearson
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Qwen-portuguese-luana-7b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: FaQuAD NLI
          type: ruanchaves/faquad-nli
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 57.96
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Qwen-portuguese-luana-7b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HateBR Binary
          type: ruanchaves/hatebr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 70.29
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Qwen-portuguese-luana-7b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: PT Hate Speech Binary
          type: hate_speech_portuguese
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 69.92
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Qwen-portuguese-luana-7b
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: tweetSentBR
          type: eduagarcia/tweetsentbr_fewshot
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 59.69
            name: f1-macro
        source:
          url: >-
            https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Qwen-portuguese-luana-7b
          name: Open Portuguese LLM Leaderboard

Qwen-portuguese-luana-7b

This model was trained with a superset of 250,000 chat in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Qwen1.5-7B-Chat in Portuguese.

How to use

FULL MODEL : A100

HALF MODEL: L4

8bit or 4bit : T4 or V100

You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models (even smaller models like 7b) to perform much better.

!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
model = AutoModelForCausalLM.from_pretrained("rhaymison/Qwen-portuguese-luana-7b", device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/Qwen-portuguese-luana-7b")
model.eval()

You can use with Pipeline but in this example i will use such as Streaming


prompt = f"""<|im_start|>system
Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.<|im_end|>
<|im_start|>user
 ### instrução: Me indique uma programação para fazer no final de semana com minha esposa. <|im_end|>
<|im_start|>"""

pipe = pipeline("text-generation",
                model=model,
                tokenizer=tokenizer,
                do_sample=True,
                max_new_tokens=200,
                num_beams=2,
                temperature=0.3,
                top_k=50,
                top_p=0.95,
                early_stopping=True,
                pad_token_id=tokenizer.eos_token_id,
                )

pipe(prompt)[0]['generated_text'].split('assistant')[1]

#Claro! Aqui está uma sugestão de programação para o final de semana com sua esposa:
#Domingo:
#1. Despertar cedo para um café da manhã delicioso juntos.
#2. Faça uma caminhada ou uma corrida no parque local para aproveitar o ar fresco e a natureza.
#3. Depois do café da manhã, faça uma caminhada de compras para escolher algumas roupas ou acessórios novos.
#4. Retorne para casa para preparar uma refeição deliciosa juntos.
#5. Depois do almoço, você pode assistir a um filme ou jogar jogos de tabuleiro para relaxar

If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. For the complete model in colab you will need the A100. If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.

4bits example

from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True
)

model = AutoModelForCausalLM.from_pretrained(
    base_model,
    quantization_config=bnb_config,
    device_map={"": 0}
)

Open Portuguese LLM Leaderboard Evaluation Results

Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard

Metric Value
Average 62.49
ENEM Challenge (No Images) 58.36
BLUEX (No Images) 48.12
OAB Exams 42.73
Assin2 RTE 81.05
Assin2 STS 74.25
FaQuAD NLI 57.96
HateBR Binary 70.29
PT Hate Speech Binary 69.92
tweetSentBR 59.69

Comments

Any idea, help or report will always be welcome.

email: [email protected]