gemma-portuguese-tom-cat-2b-it

Model description

updated: 2024-04-10 20:06

The gemma-portuguese-tom-cat-2b-it model is a portuguese model trained with the superset dataset with 250,000 instructions. The model is mainly focused on text generation and instruction. The model was not trained on math and code tasks. The model is generalist with focus on understand portuguese inferences. With this fine tuning for portuguese, you can adjust the model for a specific field.

How to Use

from transformers import AutoTokenizer, pipeline
import torch

model = "rhaymison/gemma-portuguese-tom-cat-2b-it"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device="cuda",
)

messages = [
   {
      "role": "system",
      "content": "Abaixo estรก uma instruรงรฃo que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
    },
    {"role": "user", "content": "Me conte sobre a ida do homem a Lua."},
]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(
    prompt,
    max_new_tokens=256,
    do_sample=True,
    temperature=0.2,
    top_k=50,
    top_p=0.95
)
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer2 = AutoTokenizer.from_pretrained("rhaymison/gemma-portuguese-tom-cat-2b-it")
model2 = AutoModelForCausalLM.from_pretrained("rhaymison/gemma-portuguese-tom-cat-2b-it", device_map={"":0})
tokenizer2.pad_token = tokenizer2.eos_token
tokenizer2.add_eos_token = True
tokenizer2.add_bos_token, tokenizer2.add_eos_token
tokenizer2.padding_side = "right"
def format_template( question:str):
    system_prompt = "Abaixo estรก uma instruรงรฃo que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
    text = f"""<bos>system
    {system_prompt}<end_of_turn>
    <start_of_turn>user
    ###instruรงรฃo: {question} <end_of_turn>
    <start_of_turn>model"""
    return text

question = format_template("Me conte sobre a ida do homem a Lua")

device = "cuda:0"

inputs = tokenizer2(text, return_tensors="pt").to(device)

outputs = model2.generate(**inputs, max_new_tokens=256, do_sample=False)

output = tokenizer2.decode(outputs[0], skip_special_tokens=True, skip_prompt=True)
print(output.replace("model"," "))

Comments

Any idea, help or report will always be welcome.

email: [email protected]

Open Portuguese LLM Leaderboard Evaluation Results

Detailed results can be found here and on the ๐Ÿš€ Open Portuguese LLM Leaderboard

Metric Value
Average 31.76
ENEM Challenge (No Images) 27.71
BLUEX (No Images) 29.07
OAB Exams 27.97
Assin2 RTE 46.84
Assin2 STS 14.06
FaQuAD NLI 29.39
HateBR Binary 46.59
PT Hate Speech Binary 45.36
tweetSentBR 18.86
Downloads last month
26
Safetensors
Model size
2.51B params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rhaymison/gemma-portuguese-tom-cat-2b-it

Base model

google/gemma-2b-it
Finetuned
(49)
this model
Finetunes
1 model
Quantizations
1 model

Dataset used to train rhaymison/gemma-portuguese-tom-cat-2b-it

Space using rhaymison/gemma-portuguese-tom-cat-2b-it 1

Evaluation results