metadata
library_name: transformers
tags:
- mergekit
- merge
base_model:
- ycros/BagelMIsteryTour-v2-8x7B
- smelborp/MixtralOrochi8x7B
- cognitivecomputations/dolphin-2.7-mixtral-8x7b
model-index:
- name: maid-yuzu-v7
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 64.62
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rhplus0831/maid-yuzu-v7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 26.82
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rhplus0831/maid-yuzu-v7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 8.91
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rhplus0831/maid-yuzu-v7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.94
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rhplus0831/maid-yuzu-v7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.77
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rhplus0831/maid-yuzu-v7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.22
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rhplus0831/maid-yuzu-v7
name: Open LLM Leaderboard
maid-yuzu-v7
This is a merge of pre-trained language models created using mergekit.
I don't know anything about merges, so this may be a stupid method, but I was curious how the models would be merged if I took this approach.
Merge Details
Merge Method
This model was merged using the SLERP merge method.
This model is a model that first merges Model Orochi with Model dolphin with a 0.15 SLERP option, and then merges Model BagelMIsteryTour with a 0.2 SLERP option based on the merged model.
Models Merged
The following models were included in the merge:
- ycros/BagelMIsteryTour-v2-8x7B
- ../maid-yuzu-v7-base
Configuration
The following YAML configuration was used to produce this model:
base_model:
model:
path: ../maid-yuzu-v7-base
dtype: bfloat16
merge_method: slerp
parameters:
t:
- value: 0.2
slices:
- sources:
- layer_range: [0, 32]
model:
model:
path: ../maid-yuzu-v7-base
- layer_range: [0, 32]
model:
model:
path: ycros/BagelMIsteryTour-v2-8x7B
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 24.38 |
IFEval (0-Shot) | 64.62 |
BBH (3-Shot) | 26.82 |
MATH Lvl 5 (4-Shot) | 8.91 |
GPQA (0-shot) | 7.94 |
MuSR (0-shot) | 9.77 |
MMLU-PRO (5-shot) | 28.22 |