|
---
|
|
license: apache-2.0
|
|
base_model: google/mt5-small
|
|
tags:
|
|
- summarization
|
|
- generated_from_trainer
|
|
metrics:
|
|
- rouge
|
|
model-index:
|
|
- name: mt5-small-finetuned_BBC
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# mt5-small-finetuned_BBC
|
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.7853
|
|
- Rouge1: 0.2188
|
|
- Rouge2: 0.1377
|
|
- Rougel: 0.1944
|
|
- Rougelsum: 0.1972
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5.6e-05
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 8
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
|
|
| 1.8481 | 1.0 | 223 | 0.9611 | 0.1966 | 0.1275 | 0.1759 | 0.1776 |
|
|
| 1.4347 | 2.0 | 446 | 0.8815 | 0.2065 | 0.1199 | 0.1805 | 0.1837 |
|
|
| 1.2585 | 3.0 | 669 | 0.8541 | 0.2129 | 0.1291 | 0.1880 | 0.1911 |
|
|
| 1.192 | 4.0 | 892 | 0.8184 | 0.2149 | 0.1320 | 0.1893 | 0.1926 |
|
|
| 1.1084 | 5.0 | 1115 | 0.8102 | 0.2156 | 0.1333 | 0.1908 | 0.1938 |
|
|
| 1.0796 | 6.0 | 1338 | 0.7937 | 0.2168 | 0.1337 | 0.1913 | 0.1944 |
|
|
| 1.0657 | 7.0 | 1561 | 0.7933 | 0.2181 | 0.1370 | 0.1939 | 0.1967 |
|
|
| 1.0488 | 8.0 | 1784 | 0.7853 | 0.2188 | 0.1377 | 0.1944 | 0.1972 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.40.2
|
|
- Pytorch 2.3.0
|
|
- Datasets 2.20.0
|
|
- Tokenizers 0.19.1
|
|
|