|
--- |
|
license: mit |
|
base_model: classla/xlm-roberta-base-multilingual-text-genre-classifier |
|
tags: |
|
- Italian |
|
- legal ruling |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: ribesstefano/RuleBert-v0.0-k0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ribesstefano/RuleBert-v0.0-k0 |
|
|
|
This model is a fine-tuned version of [classla/xlm-roberta-base-multilingual-text-genre-classifier](https://huggingface.co/classla/xlm-roberta-base-multilingual-text-genre-classifier) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3777 |
|
- F1: 0.5004 |
|
- Roc Auc: 0.6722 |
|
- Accuracy: 0.0375 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- training_steps: 500 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| |
|
| 0.3811 | 0.88 | 50 | 0.3716 | 0.4904 | 0.6685 | 0.0583 | |
|
| 0.3257 | 1.77 | 100 | 0.3708 | 0.4953 | 0.6701 | 0.0583 | |
|
| 0.3178 | 2.65 | 150 | 0.3745 | 0.4977 | 0.6712 | 0.0417 | |
|
| 0.3091 | 3.54 | 200 | 0.3750 | 0.4989 | 0.6719 | 0.0417 | |
|
| 0.3115 | 4.42 | 250 | 0.3768 | 0.5007 | 0.6724 | 0.0417 | |
|
| 0.3092 | 5.31 | 300 | 0.3762 | 0.5021 | 0.6727 | 0.0458 | |
|
| 0.3057 | 6.19 | 350 | 0.3772 | 0.5005 | 0.6723 | 0.0375 | |
|
| 0.3062 | 7.08 | 400 | 0.3777 | 0.5002 | 0.6721 | 0.0417 | |
|
| 0.3086 | 7.96 | 450 | 0.3777 | 0.5005 | 0.6723 | 0.0417 | |
|
| 0.3075 | 8.85 | 500 | 0.3777 | 0.5004 | 0.6722 | 0.0375 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|