pre_CIDAUTv4 / README.md
ricardoSLabs's picture
End of training
e57fa1a verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: pre_CIDAUTv4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9917695473251029

pre_CIDAUTv4

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0177
  • Accuracy: 0.9918

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8889 4 0.6742 0.5679
No log 2.0 9 0.3347 0.9218
0.6003 2.8889 13 0.1238 0.9753
0.6003 4.0 18 0.1298 0.9465
0.199 4.8889 22 0.0360 0.9877
0.199 6.0 27 0.1049 0.9671
0.0832 6.8889 31 0.0058 1.0
0.0832 8.0 36 0.0138 0.9918
0.0438 8.8889 40 0.0177 0.9918

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0