|
--- |
|
license: other |
|
base_model: microsoft/Orca-2-13b |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Orca-2-13B-Pygmalion |
|
results: [] |
|
datasets: |
|
- PygmalionAI/PIPPA |
|
language: |
|
- en |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
# Orca-2-13B-Pygmalion |
|
|
|
This model is a fine-tuned version of [microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) on the [PygmalionAI/PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9190 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| No log | 0.0 | 1 | 3.2585 | |
|
| 1.9811 | 0.05 | 536 | 2.0113 | |
|
| 1.9507 | 0.1 | 1072 | 1.9877 | |
|
| 1.9576 | 0.15 | 1608 | 1.9766 | |
|
| 1.9308 | 0.2 | 2144 | 1.9671 | |
|
| 1.9193 | 0.25 | 2680 | 1.9597 | |
|
| 1.8522 | 0.3 | 3216 | 1.9530 | |
|
| 1.895 | 0.35 | 3752 | 1.9483 | |
|
| 1.869 | 0.4 | 4288 | 1.9432 | |
|
| 1.8664 | 0.45 | 4824 | 1.9383 | |
|
| 1.8661 | 0.5 | 5360 | 1.9347 | |
|
| 1.8576 | 0.55 | 5896 | 1.9337 | |
|
| 1.8573 | 0.6 | 6432 | 1.9286 | |
|
| 1.8665 | 0.65 | 6968 | 1.9280 | |
|
| 1.8429 | 0.7 | 7504 | 1.9243 | |
|
| 1.8621 | 0.75 | 8040 | 1.9221 | |
|
| 1.8074 | 0.8 | 8576 | 1.9209 | |
|
| 1.8199 | 0.85 | 9112 | 1.9202 | |
|
| 1.8733 | 0.9 | 9648 | 1.9193 | |
|
| 1.8387 | 0.95 | 10184 | 1.9190 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.7 |
|
- Tokenizers 0.14.1 |