ricecake's picture
Update README.md
c28d523
|
raw
history blame
2.61 kB
metadata
license: other
base_model: microsoft/Orca-2-13b
tags:
  - generated_from_trainer
model-index:
  - name: Orca-2-13B-Pygmalion-LoRA
    results: []
datasets:
  - PygmalionAI/PIPPA
language:
  - en

Built with Axolotl

Orca-2-13B-Pygmalion-LoRA

This LoRA adapter is a fine-tuned version of microsoft/Orca-2-13b on the PygmalionAI/PIPPA dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9190

Model description

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
No log 0.0 1 3.2585
1.9811 0.05 536 2.0113
1.9507 0.1 1072 1.9877
1.9576 0.15 1608 1.9766
1.9308 0.2 2144 1.9671
1.9193 0.25 2680 1.9597
1.8522 0.3 3216 1.9530
1.895 0.35 3752 1.9483
1.869 0.4 4288 1.9432
1.8664 0.45 4824 1.9383
1.8661 0.5 5360 1.9347
1.8576 0.55 5896 1.9337
1.8573 0.6 6432 1.9286
1.8665 0.65 6968 1.9280
1.8429 0.7 7504 1.9243
1.8621 0.75 8040 1.9221
1.8074 0.8 8576 1.9209
1.8199 0.85 9112 1.9202
1.8733 0.9 9648 1.9193
1.8387 0.95 10184 1.9190

Framework versions

  • Transformers 4.35.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.14.1