|
"""Logic for creating models.""" |
|
|
|
from __future__ import annotations as _annotations |
|
|
|
import operator |
|
import sys |
|
import types |
|
import typing |
|
import warnings |
|
from copy import copy, deepcopy |
|
from typing import ( |
|
TYPE_CHECKING, |
|
Any, |
|
Callable, |
|
ClassVar, |
|
Dict, |
|
Generator, |
|
Literal, |
|
Set, |
|
Tuple, |
|
TypeVar, |
|
Union, |
|
cast, |
|
overload, |
|
) |
|
|
|
import pydantic_core |
|
import typing_extensions |
|
from pydantic_core import PydanticUndefined |
|
from typing_extensions import Self, TypeAlias, Unpack |
|
|
|
from ._internal import ( |
|
_config, |
|
_decorators, |
|
_fields, |
|
_forward_ref, |
|
_generics, |
|
_mock_val_ser, |
|
_model_construction, |
|
_repr, |
|
_typing_extra, |
|
_utils, |
|
) |
|
from ._migration import getattr_migration |
|
from .aliases import AliasChoices, AliasPath |
|
from .annotated_handlers import GetCoreSchemaHandler, GetJsonSchemaHandler |
|
from .config import ConfigDict |
|
from .errors import PydanticUndefinedAnnotation, PydanticUserError |
|
from .json_schema import DEFAULT_REF_TEMPLATE, GenerateJsonSchema, JsonSchemaMode, JsonSchemaValue, model_json_schema |
|
from .plugin._schema_validator import PluggableSchemaValidator |
|
from .warnings import PydanticDeprecatedSince20 |
|
|
|
|
|
|
|
ModelT = TypeVar('ModelT', bound='BaseModel') |
|
TupleGenerator = Generator[Tuple[str, Any], None, None] |
|
|
|
IncEx: TypeAlias = Union[Set[int], Set[str], Dict[int, Any], Dict[str, Any], None] |
|
|
|
|
|
if TYPE_CHECKING: |
|
from inspect import Signature |
|
from pathlib import Path |
|
|
|
from pydantic_core import CoreSchema, SchemaSerializer, SchemaValidator |
|
|
|
from ._internal._utils import AbstractSetIntStr, MappingIntStrAny |
|
from .deprecated.parse import Protocol as DeprecatedParseProtocol |
|
from .fields import ComputedFieldInfo, FieldInfo, ModelPrivateAttr |
|
from .fields import PrivateAttr as _PrivateAttr |
|
else: |
|
|
|
|
|
DeprecationWarning = PydanticDeprecatedSince20 |
|
|
|
__all__ = 'BaseModel', 'create_model' |
|
|
|
_object_setattr = _model_construction.object_setattr |
|
|
|
|
|
class BaseModel(metaclass=_model_construction.ModelMetaclass): |
|
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/models/ |
|
|
|
A base class for creating Pydantic models. |
|
|
|
Attributes: |
|
__class_vars__: The names of classvars defined on the model. |
|
__private_attributes__: Metadata about the private attributes of the model. |
|
__signature__: The signature for instantiating the model. |
|
|
|
__pydantic_complete__: Whether model building is completed, or if there are still undefined fields. |
|
__pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer. |
|
__pydantic_custom_init__: Whether the model has a custom `__init__` function. |
|
__pydantic_decorators__: Metadata containing the decorators defined on the model. |
|
This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1. |
|
__pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to |
|
__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these. |
|
__pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models. |
|
__pydantic_post_init__: The name of the post-init method for the model, if defined. |
|
__pydantic_root_model__: Whether the model is a `RootModel`. |
|
__pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model. |
|
__pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model. |
|
|
|
__pydantic_extra__: An instance attribute with the values of extra fields from validation when |
|
`model_config['extra'] == 'allow'`. |
|
__pydantic_fields_set__: An instance attribute with the names of fields explicitly set. |
|
__pydantic_private__: Instance attribute with the values of private attributes set on the model instance. |
|
""" |
|
|
|
if TYPE_CHECKING: |
|
|
|
|
|
|
|
|
|
|
|
|
|
model_config: ClassVar[ConfigDict] |
|
""" |
|
Configuration for the model, should be a dictionary conforming to [`ConfigDict`][pydantic.config.ConfigDict]. |
|
""" |
|
|
|
model_fields: ClassVar[dict[str, FieldInfo]] |
|
""" |
|
Metadata about the fields defined on the model, |
|
mapping of field names to [`FieldInfo`][pydantic.fields.FieldInfo]. |
|
|
|
This replaces `Model.__fields__` from Pydantic V1. |
|
""" |
|
|
|
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] |
|
"""A dictionary of computed field names and their corresponding `ComputedFieldInfo` objects.""" |
|
|
|
__class_vars__: ClassVar[set[str]] |
|
__private_attributes__: ClassVar[dict[str, ModelPrivateAttr]] |
|
__signature__: ClassVar[Signature] |
|
|
|
__pydantic_complete__: ClassVar[bool] |
|
__pydantic_core_schema__: ClassVar[CoreSchema] |
|
__pydantic_custom_init__: ClassVar[bool] |
|
__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] |
|
__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] |
|
__pydantic_parent_namespace__: ClassVar[dict[str, Any] | None] |
|
__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] |
|
__pydantic_root_model__: ClassVar[bool] |
|
__pydantic_serializer__: ClassVar[SchemaSerializer] |
|
__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] |
|
|
|
|
|
__pydantic_extra__: dict[str, Any] | None = _PrivateAttr() |
|
__pydantic_fields_set__: set[str] = _PrivateAttr() |
|
__pydantic_private__: dict[str, Any] | None = _PrivateAttr() |
|
|
|
else: |
|
|
|
|
|
model_fields = {} |
|
model_computed_fields = {} |
|
|
|
__pydantic_decorators__ = _decorators.DecoratorInfos() |
|
__pydantic_parent_namespace__ = None |
|
|
|
__pydantic_core_schema__ = _mock_val_ser.MockCoreSchema( |
|
'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly', |
|
code='base-model-instantiated', |
|
) |
|
__pydantic_validator__ = _mock_val_ser.MockValSer( |
|
'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly', |
|
val_or_ser='validator', |
|
code='base-model-instantiated', |
|
) |
|
__pydantic_serializer__ = _mock_val_ser.MockValSer( |
|
'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly', |
|
val_or_ser='serializer', |
|
code='base-model-instantiated', |
|
) |
|
|
|
__slots__ = '__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__' |
|
|
|
model_config = ConfigDict() |
|
__pydantic_complete__ = False |
|
__pydantic_root_model__ = False |
|
|
|
def __init__(self, /, **data: Any) -> None: |
|
"""Create a new model by parsing and validating input data from keyword arguments. |
|
|
|
Raises [`ValidationError`][pydantic_core.ValidationError] if the input data cannot be |
|
validated to form a valid model. |
|
|
|
`self` is explicitly positional-only to allow `self` as a field name. |
|
""" |
|
|
|
__tracebackhide__ = True |
|
self.__pydantic_validator__.validate_python(data, self_instance=self) |
|
|
|
|
|
__init__.__pydantic_base_init__ = True |
|
|
|
@property |
|
def model_extra(self) -> dict[str, Any] | None: |
|
"""Get extra fields set during validation. |
|
|
|
Returns: |
|
A dictionary of extra fields, or `None` if `config.extra` is not set to `"allow"`. |
|
""" |
|
return self.__pydantic_extra__ |
|
|
|
@property |
|
def model_fields_set(self) -> set[str]: |
|
"""Returns the set of fields that have been explicitly set on this model instance. |
|
|
|
Returns: |
|
A set of strings representing the fields that have been set, |
|
i.e. that were not filled from defaults. |
|
""" |
|
return self.__pydantic_fields_set__ |
|
|
|
@classmethod |
|
def model_construct(cls, _fields_set: set[str] | None = None, **values: Any) -> Self: |
|
"""Creates a new instance of the `Model` class with validated data. |
|
|
|
Creates a new model setting `__dict__` and `__pydantic_fields_set__` from trusted or pre-validated data. |
|
Default values are respected, but no other validation is performed. |
|
|
|
!!! note |
|
`model_construct()` generally respects the `model_config.extra` setting on the provided model. |
|
That is, if `model_config.extra == 'allow'`, then all extra passed values are added to the model instance's `__dict__` |
|
and `__pydantic_extra__` fields. If `model_config.extra == 'ignore'` (the default), then all extra passed values are ignored. |
|
Because no validation is performed with a call to `model_construct()`, having `model_config.extra == 'forbid'` does not result in |
|
an error if extra values are passed, but they will be ignored. |
|
|
|
Args: |
|
_fields_set: The set of field names accepted for the Model instance. |
|
values: Trusted or pre-validated data dictionary. |
|
|
|
Returns: |
|
A new instance of the `Model` class with validated data. |
|
""" |
|
m = cls.__new__(cls) |
|
fields_values: dict[str, Any] = {} |
|
fields_set = set() |
|
|
|
for name, field in cls.model_fields.items(): |
|
if field.alias is not None and field.alias in values: |
|
fields_values[name] = values.pop(field.alias) |
|
fields_set.add(name) |
|
|
|
if (name not in fields_set) and (field.validation_alias is not None): |
|
validation_aliases: list[str | AliasPath] = ( |
|
field.validation_alias.choices |
|
if isinstance(field.validation_alias, AliasChoices) |
|
else [field.validation_alias] |
|
) |
|
|
|
for alias in validation_aliases: |
|
if isinstance(alias, str) and alias in values: |
|
fields_values[name] = values.pop(alias) |
|
fields_set.add(name) |
|
break |
|
elif isinstance(alias, AliasPath): |
|
value = alias.search_dict_for_path(values) |
|
if value is not PydanticUndefined: |
|
fields_values[name] = value |
|
fields_set.add(name) |
|
break |
|
|
|
if name not in fields_set: |
|
if name in values: |
|
fields_values[name] = values.pop(name) |
|
fields_set.add(name) |
|
elif not field.is_required(): |
|
fields_values[name] = field.get_default(call_default_factory=True) |
|
if _fields_set is None: |
|
_fields_set = fields_set |
|
|
|
_extra: dict[str, Any] | None = ( |
|
{k: v for k, v in values.items()} if cls.model_config.get('extra') == 'allow' else None |
|
) |
|
_object_setattr(m, '__dict__', fields_values) |
|
_object_setattr(m, '__pydantic_fields_set__', _fields_set) |
|
if not cls.__pydantic_root_model__: |
|
_object_setattr(m, '__pydantic_extra__', _extra) |
|
|
|
if cls.__pydantic_post_init__: |
|
m.model_post_init(None) |
|
|
|
if hasattr(m, '__pydantic_private__') and m.__pydantic_private__ is not None: |
|
for k, v in values.items(): |
|
if k in m.__private_attributes__: |
|
m.__pydantic_private__[k] = v |
|
|
|
elif not cls.__pydantic_root_model__: |
|
|
|
|
|
_object_setattr(m, '__pydantic_private__', None) |
|
|
|
return m |
|
|
|
def model_copy(self, *, update: dict[str, Any] | None = None, deep: bool = False) -> Self: |
|
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#model_copy |
|
|
|
Returns a copy of the model. |
|
|
|
Args: |
|
update: Values to change/add in the new model. Note: the data is not validated |
|
before creating the new model. You should trust this data. |
|
deep: Set to `True` to make a deep copy of the model. |
|
|
|
Returns: |
|
New model instance. |
|
""" |
|
copied = self.__deepcopy__() if deep else self.__copy__() |
|
if update: |
|
if self.model_config.get('extra') == 'allow': |
|
for k, v in update.items(): |
|
if k in self.model_fields: |
|
copied.__dict__[k] = v |
|
else: |
|
if copied.__pydantic_extra__ is None: |
|
copied.__pydantic_extra__ = {} |
|
copied.__pydantic_extra__[k] = v |
|
else: |
|
copied.__dict__.update(update) |
|
copied.__pydantic_fields_set__.update(update.keys()) |
|
return copied |
|
|
|
def model_dump( |
|
self, |
|
*, |
|
mode: Literal['json', 'python'] | str = 'python', |
|
include: IncEx = None, |
|
exclude: IncEx = None, |
|
context: Any | None = None, |
|
by_alias: bool = False, |
|
exclude_unset: bool = False, |
|
exclude_defaults: bool = False, |
|
exclude_none: bool = False, |
|
round_trip: bool = False, |
|
warnings: bool | Literal['none', 'warn', 'error'] = True, |
|
serialize_as_any: bool = False, |
|
) -> dict[str, Any]: |
|
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#modelmodel_dump |
|
|
|
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. |
|
|
|
Args: |
|
mode: The mode in which `to_python` should run. |
|
If mode is 'json', the output will only contain JSON serializable types. |
|
If mode is 'python', the output may contain non-JSON-serializable Python objects. |
|
include: A set of fields to include in the output. |
|
exclude: A set of fields to exclude from the output. |
|
context: Additional context to pass to the serializer. |
|
by_alias: Whether to use the field's alias in the dictionary key if defined. |
|
exclude_unset: Whether to exclude fields that have not been explicitly set. |
|
exclude_defaults: Whether to exclude fields that are set to their default value. |
|
exclude_none: Whether to exclude fields that have a value of `None`. |
|
round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. |
|
warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, |
|
"error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError]. |
|
serialize_as_any: Whether to serialize fields with duck-typing serialization behavior. |
|
|
|
Returns: |
|
A dictionary representation of the model. |
|
""" |
|
return self.__pydantic_serializer__.to_python( |
|
self, |
|
mode=mode, |
|
by_alias=by_alias, |
|
include=include, |
|
exclude=exclude, |
|
context=context, |
|
exclude_unset=exclude_unset, |
|
exclude_defaults=exclude_defaults, |
|
exclude_none=exclude_none, |
|
round_trip=round_trip, |
|
warnings=warnings, |
|
serialize_as_any=serialize_as_any, |
|
) |
|
|
|
def model_dump_json( |
|
self, |
|
*, |
|
indent: int | None = None, |
|
include: IncEx = None, |
|
exclude: IncEx = None, |
|
context: Any | None = None, |
|
by_alias: bool = False, |
|
exclude_unset: bool = False, |
|
exclude_defaults: bool = False, |
|
exclude_none: bool = False, |
|
round_trip: bool = False, |
|
warnings: bool | Literal['none', 'warn', 'error'] = True, |
|
serialize_as_any: bool = False, |
|
) -> str: |
|
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#modelmodel_dump_json |
|
|
|
Generates a JSON representation of the model using Pydantic's `to_json` method. |
|
|
|
Args: |
|
indent: Indentation to use in the JSON output. If None is passed, the output will be compact. |
|
include: Field(s) to include in the JSON output. |
|
exclude: Field(s) to exclude from the JSON output. |
|
context: Additional context to pass to the serializer. |
|
by_alias: Whether to serialize using field aliases. |
|
exclude_unset: Whether to exclude fields that have not been explicitly set. |
|
exclude_defaults: Whether to exclude fields that are set to their default value. |
|
exclude_none: Whether to exclude fields that have a value of `None`. |
|
round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. |
|
warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors, |
|
"error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError]. |
|
serialize_as_any: Whether to serialize fields with duck-typing serialization behavior. |
|
|
|
Returns: |
|
A JSON string representation of the model. |
|
""" |
|
return self.__pydantic_serializer__.to_json( |
|
self, |
|
indent=indent, |
|
include=include, |
|
exclude=exclude, |
|
context=context, |
|
by_alias=by_alias, |
|
exclude_unset=exclude_unset, |
|
exclude_defaults=exclude_defaults, |
|
exclude_none=exclude_none, |
|
round_trip=round_trip, |
|
warnings=warnings, |
|
serialize_as_any=serialize_as_any, |
|
).decode() |
|
|
|
@classmethod |
|
def model_json_schema( |
|
cls, |
|
by_alias: bool = True, |
|
ref_template: str = DEFAULT_REF_TEMPLATE, |
|
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema, |
|
mode: JsonSchemaMode = 'validation', |
|
) -> dict[str, Any]: |
|
"""Generates a JSON schema for a model class. |
|
|
|
Args: |
|
by_alias: Whether to use attribute aliases or not. |
|
ref_template: The reference template. |
|
schema_generator: To override the logic used to generate the JSON schema, as a subclass of |
|
`GenerateJsonSchema` with your desired modifications |
|
mode: The mode in which to generate the schema. |
|
|
|
Returns: |
|
The JSON schema for the given model class. |
|
""" |
|
return model_json_schema( |
|
cls, by_alias=by_alias, ref_template=ref_template, schema_generator=schema_generator, mode=mode |
|
) |
|
|
|
@classmethod |
|
def model_parametrized_name(cls, params: tuple[type[Any], ...]) -> str: |
|
"""Compute the class name for parametrizations of generic classes. |
|
|
|
This method can be overridden to achieve a custom naming scheme for generic BaseModels. |
|
|
|
Args: |
|
params: Tuple of types of the class. Given a generic class |
|
`Model` with 2 type variables and a concrete model `Model[str, int]`, |
|
the value `(str, int)` would be passed to `params`. |
|
|
|
Returns: |
|
String representing the new class where `params` are passed to `cls` as type variables. |
|
|
|
Raises: |
|
TypeError: Raised when trying to generate concrete names for non-generic models. |
|
""" |
|
if not issubclass(cls, typing.Generic): |
|
raise TypeError('Concrete names should only be generated for generic models.') |
|
|
|
|
|
|
|
|
|
param_names = [param if isinstance(param, str) else _repr.display_as_type(param) for param in params] |
|
params_component = ', '.join(param_names) |
|
return f'{cls.__name__}[{params_component}]' |
|
|
|
def model_post_init(self, __context: Any) -> None: |
|
"""Override this method to perform additional initialization after `__init__` and `model_construct`. |
|
This is useful if you want to do some validation that requires the entire model to be initialized. |
|
""" |
|
pass |
|
|
|
@classmethod |
|
def model_rebuild( |
|
cls, |
|
*, |
|
force: bool = False, |
|
raise_errors: bool = True, |
|
_parent_namespace_depth: int = 2, |
|
_types_namespace: dict[str, Any] | None = None, |
|
) -> bool | None: |
|
"""Try to rebuild the pydantic-core schema for the model. |
|
|
|
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during |
|
the initial attempt to build the schema, and automatic rebuilding fails. |
|
|
|
Args: |
|
force: Whether to force the rebuilding of the model schema, defaults to `False`. |
|
raise_errors: Whether to raise errors, defaults to `True`. |
|
_parent_namespace_depth: The depth level of the parent namespace, defaults to 2. |
|
_types_namespace: The types namespace, defaults to `None`. |
|
|
|
Returns: |
|
Returns `None` if the schema is already "complete" and rebuilding was not required. |
|
If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`. |
|
""" |
|
if not force and cls.__pydantic_complete__: |
|
return None |
|
else: |
|
if '__pydantic_core_schema__' in cls.__dict__: |
|
delattr(cls, '__pydantic_core_schema__') |
|
if _types_namespace is not None: |
|
types_namespace: dict[str, Any] | None = _types_namespace.copy() |
|
else: |
|
if _parent_namespace_depth > 0: |
|
frame_parent_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth) or {} |
|
cls_parent_ns = ( |
|
_model_construction.unpack_lenient_weakvaluedict(cls.__pydantic_parent_namespace__) or {} |
|
) |
|
types_namespace = {**cls_parent_ns, **frame_parent_ns} |
|
cls.__pydantic_parent_namespace__ = _model_construction.build_lenient_weakvaluedict(types_namespace) |
|
else: |
|
types_namespace = _model_construction.unpack_lenient_weakvaluedict( |
|
cls.__pydantic_parent_namespace__ |
|
) |
|
|
|
types_namespace = _typing_extra.get_cls_types_namespace(cls, types_namespace) |
|
|
|
|
|
config = {**cls.model_config, 'defer_build': False} |
|
return _model_construction.complete_model_class( |
|
cls, |
|
cls.__name__, |
|
_config.ConfigWrapper(config, check=False), |
|
raise_errors=raise_errors, |
|
types_namespace=types_namespace, |
|
) |
|
|
|
@classmethod |
|
def model_validate( |
|
cls, |
|
obj: Any, |
|
*, |
|
strict: bool | None = None, |
|
from_attributes: bool | None = None, |
|
context: Any | None = None, |
|
) -> Self: |
|
"""Validate a pydantic model instance. |
|
|
|
Args: |
|
obj: The object to validate. |
|
strict: Whether to enforce types strictly. |
|
from_attributes: Whether to extract data from object attributes. |
|
context: Additional context to pass to the validator. |
|
|
|
Raises: |
|
ValidationError: If the object could not be validated. |
|
|
|
Returns: |
|
The validated model instance. |
|
""" |
|
|
|
__tracebackhide__ = True |
|
return cls.__pydantic_validator__.validate_python( |
|
obj, strict=strict, from_attributes=from_attributes, context=context |
|
) |
|
|
|
@classmethod |
|
def model_validate_json( |
|
cls, |
|
json_data: str | bytes | bytearray, |
|
*, |
|
strict: bool | None = None, |
|
context: Any | None = None, |
|
) -> Self: |
|
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/json/#json-parsing |
|
|
|
Validate the given JSON data against the Pydantic model. |
|
|
|
Args: |
|
json_data: The JSON data to validate. |
|
strict: Whether to enforce types strictly. |
|
context: Extra variables to pass to the validator. |
|
|
|
Returns: |
|
The validated Pydantic model. |
|
|
|
Raises: |
|
ValueError: If `json_data` is not a JSON string. |
|
""" |
|
|
|
__tracebackhide__ = True |
|
return cls.__pydantic_validator__.validate_json(json_data, strict=strict, context=context) |
|
|
|
@classmethod |
|
def model_validate_strings( |
|
cls, |
|
obj: Any, |
|
*, |
|
strict: bool | None = None, |
|
context: Any | None = None, |
|
) -> Self: |
|
"""Validate the given object with string data against the Pydantic model. |
|
|
|
Args: |
|
obj: The object containing string data to validate. |
|
strict: Whether to enforce types strictly. |
|
context: Extra variables to pass to the validator. |
|
|
|
Returns: |
|
The validated Pydantic model. |
|
""" |
|
|
|
__tracebackhide__ = True |
|
return cls.__pydantic_validator__.validate_strings(obj, strict=strict, context=context) |
|
|
|
@classmethod |
|
def __get_pydantic_core_schema__(cls, source: type[BaseModel], handler: GetCoreSchemaHandler, /) -> CoreSchema: |
|
"""Hook into generating the model's CoreSchema. |
|
|
|
Args: |
|
source: The class we are generating a schema for. |
|
This will generally be the same as the `cls` argument if this is a classmethod. |
|
handler: A callable that calls into Pydantic's internal CoreSchema generation logic. |
|
|
|
Returns: |
|
A `pydantic-core` `CoreSchema`. |
|
""" |
|
|
|
|
|
schema = cls.__dict__.get('__pydantic_core_schema__') |
|
if schema is not None and not isinstance(schema, _mock_val_ser.MockCoreSchema): |
|
|
|
|
|
|
|
if not cls.__pydantic_generic_metadata__['origin']: |
|
return cls.__pydantic_core_schema__ |
|
|
|
return handler(source) |
|
|
|
@classmethod |
|
def __get_pydantic_json_schema__( |
|
cls, |
|
core_schema: CoreSchema, |
|
handler: GetJsonSchemaHandler, |
|
/, |
|
) -> JsonSchemaValue: |
|
"""Hook into generating the model's JSON schema. |
|
|
|
Args: |
|
core_schema: A `pydantic-core` CoreSchema. |
|
You can ignore this argument and call the handler with a new CoreSchema, |
|
wrap this CoreSchema (`{'type': 'nullable', 'schema': current_schema}`), |
|
or just call the handler with the original schema. |
|
handler: Call into Pydantic's internal JSON schema generation. |
|
This will raise a `pydantic.errors.PydanticInvalidForJsonSchema` if JSON schema |
|
generation fails. |
|
Since this gets called by `BaseModel.model_json_schema` you can override the |
|
`schema_generator` argument to that function to change JSON schema generation globally |
|
for a type. |
|
|
|
Returns: |
|
A JSON schema, as a Python object. |
|
""" |
|
return handler(core_schema) |
|
|
|
@classmethod |
|
def __pydantic_init_subclass__(cls, **kwargs: Any) -> None: |
|
"""This is intended to behave just like `__init_subclass__`, but is called by `ModelMetaclass` |
|
only after the class is actually fully initialized. In particular, attributes like `model_fields` will |
|
be present when this is called. |
|
|
|
This is necessary because `__init_subclass__` will always be called by `type.__new__`, |
|
and it would require a prohibitively large refactor to the `ModelMetaclass` to ensure that |
|
`type.__new__` was called in such a manner that the class would already be sufficiently initialized. |
|
|
|
This will receive the same `kwargs` that would be passed to the standard `__init_subclass__`, namely, |
|
any kwargs passed to the class definition that aren't used internally by pydantic. |
|
|
|
Args: |
|
**kwargs: Any keyword arguments passed to the class definition that aren't used internally |
|
by pydantic. |
|
""" |
|
pass |
|
|
|
def __class_getitem__( |
|
cls, typevar_values: type[Any] | tuple[type[Any], ...] |
|
) -> type[BaseModel] | _forward_ref.PydanticRecursiveRef: |
|
cached = _generics.get_cached_generic_type_early(cls, typevar_values) |
|
if cached is not None: |
|
return cached |
|
|
|
if cls is BaseModel: |
|
raise TypeError('Type parameters should be placed on typing.Generic, not BaseModel') |
|
if not hasattr(cls, '__parameters__'): |
|
raise TypeError(f'{cls} cannot be parametrized because it does not inherit from typing.Generic') |
|
if not cls.__pydantic_generic_metadata__['parameters'] and typing.Generic not in cls.__bases__: |
|
raise TypeError(f'{cls} is not a generic class') |
|
|
|
if not isinstance(typevar_values, tuple): |
|
typevar_values = (typevar_values,) |
|
_generics.check_parameters_count(cls, typevar_values) |
|
|
|
|
|
typevars_map: dict[_typing_extra.TypeVarType, type[Any]] = dict( |
|
zip(cls.__pydantic_generic_metadata__['parameters'], typevar_values) |
|
) |
|
|
|
if _utils.all_identical(typevars_map.keys(), typevars_map.values()) and typevars_map: |
|
submodel = cls |
|
_generics.set_cached_generic_type(cls, typevar_values, submodel) |
|
else: |
|
parent_args = cls.__pydantic_generic_metadata__['args'] |
|
if not parent_args: |
|
args = typevar_values |
|
else: |
|
args = tuple(_generics.replace_types(arg, typevars_map) for arg in parent_args) |
|
|
|
origin = cls.__pydantic_generic_metadata__['origin'] or cls |
|
model_name = origin.model_parametrized_name(args) |
|
params = tuple( |
|
{param: None for param in _generics.iter_contained_typevars(typevars_map.values())} |
|
) |
|
|
|
with _generics.generic_recursion_self_type(origin, args) as maybe_self_type: |
|
if maybe_self_type is not None: |
|
return maybe_self_type |
|
|
|
cached = _generics.get_cached_generic_type_late(cls, typevar_values, origin, args) |
|
if cached is not None: |
|
return cached |
|
|
|
|
|
try: |
|
|
|
origin.model_rebuild(_parent_namespace_depth=3) |
|
except PydanticUndefinedAnnotation: |
|
|
|
|
|
|
|
pass |
|
|
|
submodel = _generics.create_generic_submodel(model_name, origin, args, params) |
|
|
|
|
|
_generics.set_cached_generic_type(cls, typevar_values, submodel, origin, args) |
|
|
|
return submodel |
|
|
|
def __copy__(self) -> Self: |
|
"""Returns a shallow copy of the model.""" |
|
cls = type(self) |
|
m = cls.__new__(cls) |
|
_object_setattr(m, '__dict__', copy(self.__dict__)) |
|
_object_setattr(m, '__pydantic_extra__', copy(self.__pydantic_extra__)) |
|
_object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__)) |
|
|
|
if not hasattr(self, '__pydantic_private__') or self.__pydantic_private__ is None: |
|
_object_setattr(m, '__pydantic_private__', None) |
|
else: |
|
_object_setattr( |
|
m, |
|
'__pydantic_private__', |
|
{k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}, |
|
) |
|
|
|
return m |
|
|
|
def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self: |
|
"""Returns a deep copy of the model.""" |
|
cls = type(self) |
|
m = cls.__new__(cls) |
|
_object_setattr(m, '__dict__', deepcopy(self.__dict__, memo=memo)) |
|
_object_setattr(m, '__pydantic_extra__', deepcopy(self.__pydantic_extra__, memo=memo)) |
|
|
|
|
|
_object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__)) |
|
|
|
if not hasattr(self, '__pydantic_private__') or self.__pydantic_private__ is None: |
|
_object_setattr(m, '__pydantic_private__', None) |
|
else: |
|
_object_setattr( |
|
m, |
|
'__pydantic_private__', |
|
deepcopy({k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}, memo=memo), |
|
) |
|
|
|
return m |
|
|
|
if not TYPE_CHECKING: |
|
|
|
|
|
|
|
def __getattr__(self, item: str) -> Any: |
|
private_attributes = object.__getattribute__(self, '__private_attributes__') |
|
if item in private_attributes: |
|
attribute = private_attributes[item] |
|
if hasattr(attribute, '__get__'): |
|
return attribute.__get__(self, type(self)) |
|
|
|
try: |
|
|
|
return self.__pydantic_private__[item] |
|
except KeyError as exc: |
|
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc |
|
else: |
|
|
|
|
|
try: |
|
pydantic_extra = object.__getattribute__(self, '__pydantic_extra__') |
|
except AttributeError: |
|
pydantic_extra = None |
|
|
|
if pydantic_extra: |
|
try: |
|
return pydantic_extra[item] |
|
except KeyError as exc: |
|
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc |
|
else: |
|
if hasattr(self.__class__, item): |
|
return super().__getattribute__(item) |
|
else: |
|
|
|
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') |
|
|
|
def __setattr__(self, name: str, value: Any) -> None: |
|
if name in self.__class_vars__: |
|
raise AttributeError( |
|
f'{name!r} is a ClassVar of `{self.__class__.__name__}` and cannot be set on an instance. ' |
|
f'If you want to set a value on the class, use `{self.__class__.__name__}.{name} = value`.' |
|
) |
|
elif not _fields.is_valid_field_name(name): |
|
if self.__pydantic_private__ is None or name not in self.__private_attributes__: |
|
_object_setattr(self, name, value) |
|
else: |
|
attribute = self.__private_attributes__[name] |
|
if hasattr(attribute, '__set__'): |
|
attribute.__set__(self, value) |
|
else: |
|
self.__pydantic_private__[name] = value |
|
return |
|
|
|
self._check_frozen(name, value) |
|
|
|
attr = getattr(self.__class__, name, None) |
|
if isinstance(attr, property): |
|
attr.__set__(self, value) |
|
elif self.model_config.get('validate_assignment', None): |
|
self.__pydantic_validator__.validate_assignment(self, name, value) |
|
elif self.model_config.get('extra') != 'allow' and name not in self.model_fields: |
|
|
|
raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"') |
|
elif self.model_config.get('extra') == 'allow' and name not in self.model_fields: |
|
if self.model_extra and name in self.model_extra: |
|
self.__pydantic_extra__[name] = value |
|
else: |
|
try: |
|
getattr(self, name) |
|
except AttributeError: |
|
|
|
self.__pydantic_extra__[name] = value |
|
else: |
|
|
|
_object_setattr(self, name, value) |
|
else: |
|
self.__dict__[name] = value |
|
self.__pydantic_fields_set__.add(name) |
|
|
|
def __delattr__(self, item: str) -> Any: |
|
if item in self.__private_attributes__: |
|
attribute = self.__private_attributes__[item] |
|
if hasattr(attribute, '__delete__'): |
|
attribute.__delete__(self) |
|
return |
|
|
|
try: |
|
|
|
del self.__pydantic_private__[item] |
|
return |
|
except KeyError as exc: |
|
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc |
|
|
|
self._check_frozen(item, None) |
|
|
|
if item in self.model_fields: |
|
object.__delattr__(self, item) |
|
elif self.__pydantic_extra__ is not None and item in self.__pydantic_extra__: |
|
del self.__pydantic_extra__[item] |
|
else: |
|
try: |
|
object.__delattr__(self, item) |
|
except AttributeError: |
|
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') |
|
|
|
def _check_frozen(self, name: str, value: Any) -> None: |
|
if self.model_config.get('frozen', None): |
|
typ = 'frozen_instance' |
|
elif getattr(self.model_fields.get(name), 'frozen', False): |
|
typ = 'frozen_field' |
|
else: |
|
return |
|
error: pydantic_core.InitErrorDetails = { |
|
'type': typ, |
|
'loc': (name,), |
|
'input': value, |
|
} |
|
raise pydantic_core.ValidationError.from_exception_data(self.__class__.__name__, [error]) |
|
|
|
def __getstate__(self) -> dict[Any, Any]: |
|
private = self.__pydantic_private__ |
|
if private: |
|
private = {k: v for k, v in private.items() if v is not PydanticUndefined} |
|
return { |
|
'__dict__': self.__dict__, |
|
'__pydantic_extra__': self.__pydantic_extra__, |
|
'__pydantic_fields_set__': self.__pydantic_fields_set__, |
|
'__pydantic_private__': private, |
|
} |
|
|
|
def __setstate__(self, state: dict[Any, Any]) -> None: |
|
_object_setattr(self, '__pydantic_fields_set__', state.get('__pydantic_fields_set__', {})) |
|
_object_setattr(self, '__pydantic_extra__', state.get('__pydantic_extra__', {})) |
|
_object_setattr(self, '__pydantic_private__', state.get('__pydantic_private__', {})) |
|
_object_setattr(self, '__dict__', state.get('__dict__', {})) |
|
|
|
if not TYPE_CHECKING: |
|
|
|
def __eq__(self, other: Any) -> bool: |
|
if isinstance(other, BaseModel): |
|
|
|
|
|
|
|
self_type = self.__pydantic_generic_metadata__['origin'] or self.__class__ |
|
other_type = other.__pydantic_generic_metadata__['origin'] or other.__class__ |
|
|
|
|
|
if not ( |
|
self_type == other_type |
|
and getattr(self, '__pydantic_private__', None) == getattr(other, '__pydantic_private__', None) |
|
and self.__pydantic_extra__ == other.__pydantic_extra__ |
|
): |
|
return False |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.__dict__ == other.__dict__: |
|
|
|
return True |
|
|
|
|
|
|
|
model_fields = type(self).model_fields.keys() |
|
if self.__dict__.keys() <= model_fields and other.__dict__.keys() <= model_fields: |
|
return False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
getter = operator.itemgetter(*model_fields) if model_fields else lambda _: _utils._SENTINEL |
|
try: |
|
return getter(self.__dict__) == getter(other.__dict__) |
|
except KeyError: |
|
|
|
|
|
|
|
|
|
|
|
self_fields_proxy = _utils.SafeGetItemProxy(self.__dict__) |
|
other_fields_proxy = _utils.SafeGetItemProxy(other.__dict__) |
|
return getter(self_fields_proxy) == getter(other_fields_proxy) |
|
|
|
|
|
else: |
|
return NotImplemented |
|
|
|
if TYPE_CHECKING: |
|
|
|
|
|
|
|
|
|
def __init_subclass__(cls, **kwargs: Unpack[ConfigDict]): |
|
"""This signature is included purely to help type-checkers check arguments to class declaration, which |
|
provides a way to conveniently set model_config key/value pairs. |
|
|
|
```py |
|
from pydantic import BaseModel |
|
|
|
class MyModel(BaseModel, extra='allow'): |
|
... |
|
``` |
|
|
|
However, this may be deceiving, since the _actual_ calls to `__init_subclass__` will not receive any |
|
of the config arguments, and will only receive any keyword arguments passed during class initialization |
|
that are _not_ expected keys in ConfigDict. (This is due to the way `ModelMetaclass.__new__` works.) |
|
|
|
Args: |
|
**kwargs: Keyword arguments passed to the class definition, which set model_config |
|
|
|
Note: |
|
You may want to override `__pydantic_init_subclass__` instead, which behaves similarly but is called |
|
*after* the class is fully initialized. |
|
""" |
|
|
|
def __iter__(self) -> TupleGenerator: |
|
"""So `dict(model)` works.""" |
|
yield from [(k, v) for (k, v) in self.__dict__.items() if not k.startswith('_')] |
|
extra = self.__pydantic_extra__ |
|
if extra: |
|
yield from extra.items() |
|
|
|
def __repr__(self) -> str: |
|
return f'{self.__repr_name__()}({self.__repr_str__(", ")})' |
|
|
|
def __repr_args__(self) -> _repr.ReprArgs: |
|
for k, v in self.__dict__.items(): |
|
field = self.model_fields.get(k) |
|
if field and field.repr: |
|
yield k, v |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
pydantic_extra = object.__getattribute__(self, '__pydantic_extra__') |
|
except AttributeError: |
|
pydantic_extra = None |
|
|
|
if pydantic_extra is not None: |
|
yield from ((k, v) for k, v in pydantic_extra.items()) |
|
yield from ((k, getattr(self, k)) for k, v in self.model_computed_fields.items() if v.repr) |
|
|
|
|
|
__repr_name__ = _repr.Representation.__repr_name__ |
|
__repr_str__ = _repr.Representation.__repr_str__ |
|
__pretty__ = _repr.Representation.__pretty__ |
|
__rich_repr__ = _repr.Representation.__rich_repr__ |
|
|
|
def __str__(self) -> str: |
|
return self.__repr_str__(' ') |
|
|
|
|
|
@property |
|
@typing_extensions.deprecated( |
|
'The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None |
|
) |
|
def __fields__(self) -> dict[str, FieldInfo]: |
|
warnings.warn( |
|
'The `__fields__` attribute is deprecated, use `model_fields` instead.', category=PydanticDeprecatedSince20 |
|
) |
|
return self.model_fields |
|
|
|
@property |
|
@typing_extensions.deprecated( |
|
'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.', |
|
category=None, |
|
) |
|
def __fields_set__(self) -> set[str]: |
|
warnings.warn( |
|
'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.', |
|
category=PydanticDeprecatedSince20, |
|
) |
|
return self.__pydantic_fields_set__ |
|
|
|
@typing_extensions.deprecated('The `dict` method is deprecated; use `model_dump` instead.', category=None) |
|
def dict( |
|
self, |
|
*, |
|
include: IncEx = None, |
|
exclude: IncEx = None, |
|
by_alias: bool = False, |
|
exclude_unset: bool = False, |
|
exclude_defaults: bool = False, |
|
exclude_none: bool = False, |
|
) -> Dict[str, Any]: |
|
warnings.warn('The `dict` method is deprecated; use `model_dump` instead.', category=PydanticDeprecatedSince20) |
|
return self.model_dump( |
|
include=include, |
|
exclude=exclude, |
|
by_alias=by_alias, |
|
exclude_unset=exclude_unset, |
|
exclude_defaults=exclude_defaults, |
|
exclude_none=exclude_none, |
|
) |
|
|
|
@typing_extensions.deprecated('The `json` method is deprecated; use `model_dump_json` instead.', category=None) |
|
def json( |
|
self, |
|
*, |
|
include: IncEx = None, |
|
exclude: IncEx = None, |
|
by_alias: bool = False, |
|
exclude_unset: bool = False, |
|
exclude_defaults: bool = False, |
|
exclude_none: bool = False, |
|
encoder: Callable[[Any], Any] | None = PydanticUndefined, |
|
models_as_dict: bool = PydanticUndefined, |
|
**dumps_kwargs: Any, |
|
) -> str: |
|
warnings.warn( |
|
'The `json` method is deprecated; use `model_dump_json` instead.', category=PydanticDeprecatedSince20 |
|
) |
|
if encoder is not PydanticUndefined: |
|
raise TypeError('The `encoder` argument is no longer supported; use field serializers instead.') |
|
if models_as_dict is not PydanticUndefined: |
|
raise TypeError('The `models_as_dict` argument is no longer supported; use a model serializer instead.') |
|
if dumps_kwargs: |
|
raise TypeError('`dumps_kwargs` keyword arguments are no longer supported.') |
|
return self.model_dump_json( |
|
include=include, |
|
exclude=exclude, |
|
by_alias=by_alias, |
|
exclude_unset=exclude_unset, |
|
exclude_defaults=exclude_defaults, |
|
exclude_none=exclude_none, |
|
) |
|
|
|
@classmethod |
|
@typing_extensions.deprecated('The `parse_obj` method is deprecated; use `model_validate` instead.', category=None) |
|
def parse_obj(cls, obj: Any) -> Self: |
|
warnings.warn( |
|
'The `parse_obj` method is deprecated; use `model_validate` instead.', category=PydanticDeprecatedSince20 |
|
) |
|
return cls.model_validate(obj) |
|
|
|
@classmethod |
|
@typing_extensions.deprecated( |
|
'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, ' |
|
'otherwise load the data then use `model_validate` instead.', |
|
category=None, |
|
) |
|
def parse_raw( |
|
cls, |
|
b: str | bytes, |
|
*, |
|
content_type: str | None = None, |
|
encoding: str = 'utf8', |
|
proto: DeprecatedParseProtocol | None = None, |
|
allow_pickle: bool = False, |
|
) -> Self: |
|
warnings.warn( |
|
'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, ' |
|
'otherwise load the data then use `model_validate` instead.', |
|
category=PydanticDeprecatedSince20, |
|
) |
|
from .deprecated import parse |
|
|
|
try: |
|
obj = parse.load_str_bytes( |
|
b, |
|
proto=proto, |
|
content_type=content_type, |
|
encoding=encoding, |
|
allow_pickle=allow_pickle, |
|
) |
|
except (ValueError, TypeError) as exc: |
|
import json |
|
|
|
|
|
if isinstance(exc, UnicodeDecodeError): |
|
type_str = 'value_error.unicodedecode' |
|
elif isinstance(exc, json.JSONDecodeError): |
|
type_str = 'value_error.jsondecode' |
|
elif isinstance(exc, ValueError): |
|
type_str = 'value_error' |
|
else: |
|
type_str = 'type_error' |
|
|
|
|
|
error: pydantic_core.InitErrorDetails = { |
|
|
|
'type': pydantic_core.PydanticCustomError(type_str, str(exc)), |
|
'loc': ('__root__',), |
|
'input': b, |
|
} |
|
raise pydantic_core.ValidationError.from_exception_data(cls.__name__, [error]) |
|
return cls.model_validate(obj) |
|
|
|
@classmethod |
|
@typing_extensions.deprecated( |
|
'The `parse_file` method is deprecated; load the data from file, then if your data is JSON ' |
|
'use `model_validate_json`, otherwise `model_validate` instead.', |
|
category=None, |
|
) |
|
def parse_file( |
|
cls, |
|
path: str | Path, |
|
*, |
|
content_type: str | None = None, |
|
encoding: str = 'utf8', |
|
proto: DeprecatedParseProtocol | None = None, |
|
allow_pickle: bool = False, |
|
) -> Self: |
|
warnings.warn( |
|
'The `parse_file` method is deprecated; load the data from file, then if your data is JSON ' |
|
'use `model_validate_json`, otherwise `model_validate` instead.', |
|
category=PydanticDeprecatedSince20, |
|
) |
|
from .deprecated import parse |
|
|
|
obj = parse.load_file( |
|
path, |
|
proto=proto, |
|
content_type=content_type, |
|
encoding=encoding, |
|
allow_pickle=allow_pickle, |
|
) |
|
return cls.parse_obj(obj) |
|
|
|
@classmethod |
|
@typing_extensions.deprecated( |
|
'The `from_orm` method is deprecated; set ' |
|
"`model_config['from_attributes']=True` and use `model_validate` instead.", |
|
category=None, |
|
) |
|
def from_orm(cls, obj: Any) -> Self: |
|
warnings.warn( |
|
'The `from_orm` method is deprecated; set ' |
|
"`model_config['from_attributes']=True` and use `model_validate` instead.", |
|
category=PydanticDeprecatedSince20, |
|
) |
|
if not cls.model_config.get('from_attributes', None): |
|
raise PydanticUserError( |
|
'You must set the config attribute `from_attributes=True` to use from_orm', code=None |
|
) |
|
return cls.model_validate(obj) |
|
|
|
@classmethod |
|
@typing_extensions.deprecated('The `construct` method is deprecated; use `model_construct` instead.', category=None) |
|
def construct(cls, _fields_set: set[str] | None = None, **values: Any) -> Self: |
|
warnings.warn( |
|
'The `construct` method is deprecated; use `model_construct` instead.', category=PydanticDeprecatedSince20 |
|
) |
|
return cls.model_construct(_fields_set=_fields_set, **values) |
|
|
|
@typing_extensions.deprecated( |
|
'The `copy` method is deprecated; use `model_copy` instead. ' |
|
'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.', |
|
category=None, |
|
) |
|
def copy( |
|
self, |
|
*, |
|
include: AbstractSetIntStr | MappingIntStrAny | None = None, |
|
exclude: AbstractSetIntStr | MappingIntStrAny | None = None, |
|
update: Dict[str, Any] | None = None, |
|
deep: bool = False, |
|
) -> Self: |
|
"""Returns a copy of the model. |
|
|
|
!!! warning "Deprecated" |
|
This method is now deprecated; use `model_copy` instead. |
|
|
|
If you need `include` or `exclude`, use: |
|
|
|
```py |
|
data = self.model_dump(include=include, exclude=exclude, round_trip=True) |
|
data = {**data, **(update or {})} |
|
copied = self.model_validate(data) |
|
``` |
|
|
|
Args: |
|
include: Optional set or mapping specifying which fields to include in the copied model. |
|
exclude: Optional set or mapping specifying which fields to exclude in the copied model. |
|
update: Optional dictionary of field-value pairs to override field values in the copied model. |
|
deep: If True, the values of fields that are Pydantic models will be deep-copied. |
|
|
|
Returns: |
|
A copy of the model with included, excluded and updated fields as specified. |
|
""" |
|
warnings.warn( |
|
'The `copy` method is deprecated; use `model_copy` instead. ' |
|
'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.', |
|
category=PydanticDeprecatedSince20, |
|
) |
|
from .deprecated import copy_internals |
|
|
|
values = dict( |
|
copy_internals._iter( |
|
self, to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False |
|
), |
|
**(update or {}), |
|
) |
|
if self.__pydantic_private__ is None: |
|
private = None |
|
else: |
|
private = {k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined} |
|
|
|
if self.__pydantic_extra__ is None: |
|
extra: dict[str, Any] | None = None |
|
else: |
|
extra = self.__pydantic_extra__.copy() |
|
for k in list(self.__pydantic_extra__): |
|
if k not in values: |
|
extra.pop(k) |
|
for k in list(values): |
|
if k in self.__pydantic_extra__: |
|
extra[k] = values.pop(k) |
|
|
|
|
|
if update: |
|
fields_set = self.__pydantic_fields_set__ | update.keys() |
|
else: |
|
fields_set = set(self.__pydantic_fields_set__) |
|
|
|
|
|
if exclude: |
|
fields_set -= set(exclude) |
|
|
|
return copy_internals._copy_and_set_values(self, values, fields_set, extra, private, deep=deep) |
|
|
|
@classmethod |
|
@typing_extensions.deprecated('The `schema` method is deprecated; use `model_json_schema` instead.', category=None) |
|
def schema( |
|
cls, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE |
|
) -> Dict[str, Any]: |
|
warnings.warn( |
|
'The `schema` method is deprecated; use `model_json_schema` instead.', category=PydanticDeprecatedSince20 |
|
) |
|
return cls.model_json_schema(by_alias=by_alias, ref_template=ref_template) |
|
|
|
@classmethod |
|
@typing_extensions.deprecated( |
|
'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.', |
|
category=None, |
|
) |
|
def schema_json( |
|
cls, *, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any |
|
) -> str: |
|
warnings.warn( |
|
'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.', |
|
category=PydanticDeprecatedSince20, |
|
) |
|
import json |
|
|
|
from .deprecated.json import pydantic_encoder |
|
|
|
return json.dumps( |
|
cls.model_json_schema(by_alias=by_alias, ref_template=ref_template), |
|
default=pydantic_encoder, |
|
**dumps_kwargs, |
|
) |
|
|
|
@classmethod |
|
@typing_extensions.deprecated('The `validate` method is deprecated; use `model_validate` instead.', category=None) |
|
def validate(cls, value: Any) -> Self: |
|
warnings.warn( |
|
'The `validate` method is deprecated; use `model_validate` instead.', category=PydanticDeprecatedSince20 |
|
) |
|
return cls.model_validate(value) |
|
|
|
@classmethod |
|
@typing_extensions.deprecated( |
|
'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.', |
|
category=None, |
|
) |
|
def update_forward_refs(cls, **localns: Any) -> None: |
|
warnings.warn( |
|
'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.', |
|
category=PydanticDeprecatedSince20, |
|
) |
|
if localns: |
|
raise TypeError('`localns` arguments are not longer accepted.') |
|
cls.model_rebuild(force=True) |
|
|
|
@typing_extensions.deprecated( |
|
'The private method `_iter` will be removed and should no longer be used.', category=None |
|
) |
|
def _iter(self, *args: Any, **kwargs: Any) -> Any: |
|
warnings.warn( |
|
'The private method `_iter` will be removed and should no longer be used.', |
|
category=PydanticDeprecatedSince20, |
|
) |
|
from .deprecated import copy_internals |
|
|
|
return copy_internals._iter(self, *args, **kwargs) |
|
|
|
@typing_extensions.deprecated( |
|
'The private method `_copy_and_set_values` will be removed and should no longer be used.', |
|
category=None, |
|
) |
|
def _copy_and_set_values(self, *args: Any, **kwargs: Any) -> Any: |
|
warnings.warn( |
|
'The private method `_copy_and_set_values` will be removed and should no longer be used.', |
|
category=PydanticDeprecatedSince20, |
|
) |
|
from .deprecated import copy_internals |
|
|
|
return copy_internals._copy_and_set_values(self, *args, **kwargs) |
|
|
|
@classmethod |
|
@typing_extensions.deprecated( |
|
'The private method `_get_value` will be removed and should no longer be used.', |
|
category=None, |
|
) |
|
def _get_value(cls, *args: Any, **kwargs: Any) -> Any: |
|
warnings.warn( |
|
'The private method `_get_value` will be removed and should no longer be used.', |
|
category=PydanticDeprecatedSince20, |
|
) |
|
from .deprecated import copy_internals |
|
|
|
return copy_internals._get_value(cls, *args, **kwargs) |
|
|
|
@typing_extensions.deprecated( |
|
'The private method `_calculate_keys` will be removed and should no longer be used.', |
|
category=None, |
|
) |
|
def _calculate_keys(self, *args: Any, **kwargs: Any) -> Any: |
|
warnings.warn( |
|
'The private method `_calculate_keys` will be removed and should no longer be used.', |
|
category=PydanticDeprecatedSince20, |
|
) |
|
from .deprecated import copy_internals |
|
|
|
return copy_internals._calculate_keys(self, *args, **kwargs) |
|
|
|
|
|
@overload |
|
def create_model( |
|
model_name: str, |
|
/, |
|
*, |
|
__config__: ConfigDict | None = None, |
|
__doc__: str | None = None, |
|
__base__: None = None, |
|
__module__: str = __name__, |
|
__validators__: dict[str, Callable[..., Any]] | None = None, |
|
__cls_kwargs__: dict[str, Any] | None = None, |
|
**field_definitions: Any, |
|
) -> type[BaseModel]: ... |
|
|
|
|
|
@overload |
|
def create_model( |
|
model_name: str, |
|
/, |
|
*, |
|
__config__: ConfigDict | None = None, |
|
__doc__: str | None = None, |
|
__base__: type[ModelT] | tuple[type[ModelT], ...], |
|
__module__: str = __name__, |
|
__validators__: dict[str, Callable[..., Any]] | None = None, |
|
__cls_kwargs__: dict[str, Any] | None = None, |
|
**field_definitions: Any, |
|
) -> type[ModelT]: ... |
|
|
|
|
|
def create_model( |
|
model_name: str, |
|
/, |
|
*, |
|
__config__: ConfigDict | None = None, |
|
__doc__: str | None = None, |
|
__base__: type[ModelT] | tuple[type[ModelT], ...] | None = None, |
|
__module__: str | None = None, |
|
__validators__: dict[str, Callable[..., Any]] | None = None, |
|
__cls_kwargs__: dict[str, Any] | None = None, |
|
__slots__: tuple[str, ...] | None = None, |
|
**field_definitions: Any, |
|
) -> type[ModelT]: |
|
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/models/#dynamic-model-creation |
|
|
|
Dynamically creates and returns a new Pydantic model, in other words, `create_model` dynamically creates a |
|
subclass of [`BaseModel`][pydantic.BaseModel]. |
|
|
|
Args: |
|
model_name: The name of the newly created model. |
|
__config__: The configuration of the new model. |
|
__doc__: The docstring of the new model. |
|
__base__: The base class or classes for the new model. |
|
__module__: The name of the module that the model belongs to; |
|
if `None`, the value is taken from `sys._getframe(1)` |
|
__validators__: A dictionary of methods that validate fields. The keys are the names of the validation methods to |
|
be added to the model, and the values are the validation methods themselves. You can read more about functional |
|
validators [here](https://docs.pydantic.dev/2.8/concepts/validators/#field-validators). |
|
__cls_kwargs__: A dictionary of keyword arguments for class creation, such as `metaclass`. |
|
__slots__: Deprecated. Should not be passed to `create_model`. |
|
**field_definitions: Attributes of the new model. They should be passed in the format: |
|
`<name>=(<type>, <default value>)`, `<name>=(<type>, <FieldInfo>)`, or `typing.Annotated[<type>, <FieldInfo>]`. |
|
Any additional metadata in `typing.Annotated[<type>, <FieldInfo>, ...]` will be ignored. |
|
|
|
Returns: |
|
The new [model][pydantic.BaseModel]. |
|
|
|
Raises: |
|
PydanticUserError: If `__base__` and `__config__` are both passed. |
|
""" |
|
if __slots__ is not None: |
|
|
|
warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning) |
|
|
|
if __base__ is not None: |
|
if __config__ is not None: |
|
raise PydanticUserError( |
|
'to avoid confusion `__config__` and `__base__` cannot be used together', |
|
code='create-model-config-base', |
|
) |
|
if not isinstance(__base__, tuple): |
|
__base__ = (__base__,) |
|
else: |
|
__base__ = (cast('type[ModelT]', BaseModel),) |
|
|
|
__cls_kwargs__ = __cls_kwargs__ or {} |
|
|
|
fields = {} |
|
annotations = {} |
|
|
|
for f_name, f_def in field_definitions.items(): |
|
if not _fields.is_valid_field_name(f_name): |
|
warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning) |
|
if isinstance(f_def, tuple): |
|
f_def = cast('tuple[str, Any]', f_def) |
|
try: |
|
f_annotation, f_value = f_def |
|
except ValueError as e: |
|
raise PydanticUserError( |
|
'Field definitions should be a `(<type>, <default>)`.', |
|
code='create-model-field-definitions', |
|
) from e |
|
|
|
elif _typing_extra.is_annotated(f_def): |
|
(f_annotation, f_value, *_) = typing_extensions.get_args( |
|
f_def |
|
) |
|
from .fields import FieldInfo |
|
|
|
if not isinstance(f_value, FieldInfo): |
|
raise PydanticUserError( |
|
'Field definitions should be a Annotated[<type>, <FieldInfo>]', |
|
code='create-model-field-definitions', |
|
) |
|
|
|
else: |
|
f_annotation, f_value = None, f_def |
|
|
|
if f_annotation: |
|
annotations[f_name] = f_annotation |
|
fields[f_name] = f_value |
|
|
|
if __module__ is None: |
|
f = sys._getframe(1) |
|
__module__ = f.f_globals['__name__'] |
|
|
|
namespace: dict[str, Any] = {'__annotations__': annotations, '__module__': __module__} |
|
if __doc__: |
|
namespace.update({'__doc__': __doc__}) |
|
if __validators__: |
|
namespace.update(__validators__) |
|
namespace.update(fields) |
|
if __config__: |
|
namespace['model_config'] = _config.ConfigWrapper(__config__).config_dict |
|
resolved_bases = types.resolve_bases(__base__) |
|
meta, ns, kwds = types.prepare_class(model_name, resolved_bases, kwds=__cls_kwargs__) |
|
if resolved_bases is not __base__: |
|
ns['__orig_bases__'] = __base__ |
|
namespace.update(ns) |
|
|
|
return meta( |
|
model_name, |
|
resolved_bases, |
|
namespace, |
|
__pydantic_reset_parent_namespace__=False, |
|
_create_model_module=__module__, |
|
**kwds, |
|
) |
|
|
|
|
|
__getattr__ = getattr_migration(__name__) |
|
|