metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-base-khmer-aug
results: []
whisper-base-khmer-aug
This model is a fine-tuned version of openai/whisper-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4161
- Wer: 73.7474
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.0144 | 0.9989 | 669 | 0.6891 | 100.4865 |
0.5319 | 1.9993 | 1339 | 0.4952 | 89.9303 |
0.4108 | 2.9996 | 2009 | 0.4335 | 88.0979 |
0.3458 | 4.0 | 2679 | 0.4046 | 79.3903 |
0.3025 | 4.9989 | 3348 | 0.3869 | 76.9256 |
0.2688 | 5.9993 | 4018 | 0.3794 | 81.5145 |
0.2427 | 6.9996 | 4688 | 0.3875 | 77.5904 |
0.2187 | 8.0 | 5358 | 0.3883 | 74.6392 |
0.201 | 8.9989 | 6027 | 0.4046 | 74.5581 |
0.182 | 9.9888 | 6690 | 0.4161 | 73.7474 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.19.1