|
--- |
|
language: ja |
|
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png |
|
tags: |
|
- ja |
|
- gpt_neox |
|
- text-generation |
|
- lm |
|
- nlp |
|
license: mit |
|
datasets: |
|
- Anthropic/hh-rlhf |
|
- stanfordnlp/SHP |
|
inference: false |
|
--- |
|
|
|
# japanese-gpt-neox-3.6b-instruction-sft |
|
|
|
![rinna-icon](./rinna.png) |
|
|
|
# Overview |
|
This repository provides a Japanese GPT-NeoX model of 3.6 billion parameters. The model is based on [`rinna/japanese-gpt-neox-3.6b`](https://huggingface.co/rinna/japanese-gpt-neox-3.6b) and has been finetuned to serve as an instruction-following conversational agent. |
|
|
|
* **Model architecture** |
|
|
|
A 36-layer, 2816-hidden-size transformer-based language model. |
|
|
|
* **Finetuning** |
|
|
|
The finetuning data is the subset of the following datasets and has been translated into Japanese. |
|
* [Anthropic HH RLHF data](https://huggingface.co/datasets/Anthropic/hh-rlhf) |
|
* [FLAN Instruction Tuning data](https://github.com/google-research/FLAN) |
|
* [Stanford Human Preferences Dataset](https://huggingface.co/datasets/stanfordnlp/SHP) |
|
|
|
The data will **not** be released. |
|
|
|
* **Model Series** |
|
|
|
| Variant | Link | |
|
| :-- | :--| |
|
| 3.6B PPO | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo | |
|
| 3.6B SFT-v2 | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft-v2 | |
|
| 3.6B SFT | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft | |
|
| 3.6B pretrained | https://huggingface.co/rinna/japanese-gpt-neox-3.6b | |
|
|
|
* **Authors** |
|
|
|
[Tianyu Zhao](https://huggingface.co/tianyuz) and [Kei Sawada](https://huggingface.co/keisawada) |
|
|
|
# I/O Format |
|
A special format has been adopted to construct inputs. |
|
* An input prompt is formatted as a conversation between `ユーザー` and `システム`. |
|
* Each input utterance consists of (1) its speaker (`"ユーザー"` or `"システム"`), (2) a colon (`":"`), (3) a whitespace (`" "`), and (4) utterance text (e.g. `"世界で一番高い山は?"`). |
|
* The input prompt should be ended with `"システム: "` to acknowledge the model to generate a response. |
|
* Since the model's tokenizer does not recognize `"\n"`, a special newline symbol `"<NL>"` is used instead. |
|
* All the newlines in input and output utterances should be replaced with `"<NL>"`. |
|
* All the utterances in the input prompt should be separated by `"<NL>"`. |
|
|
|
Following is an example to construct an input from a conversation. |
|
~~~python |
|
prompt = [ |
|
{ |
|
"speaker": "ユーザー", |
|
"text": "日本のおすすめの観光地を教えてください。" |
|
}, |
|
{ |
|
"speaker": "システム", |
|
"text": "どの地域の観光地が知りたいですか?" |
|
}, |
|
{ |
|
"speaker": "ユーザー", |
|
"text": "渋谷の観光地を教えてください。" |
|
} |
|
] |
|
prompt = [ |
|
f"{uttr['speaker']}: {uttr['text']}" |
|
for uttr in prompt |
|
] |
|
prompt = "<NL>".join(prompt) |
|
prompt = ( |
|
prompt |
|
+ "<NL>" |
|
+ "システム: " |
|
) |
|
print(prompt) |
|
# "ユーザー: 日本のおすすめの観光地を教えてください。<NL>システム: どの地域の観光地が知りたいですか?<NL>ユーザー: 渋谷の観光地を教えてください。<NL>システム: " |
|
~~~ |
|
|
|
# How to use the model |
|
|
|
~~~~python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft", use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft") |
|
|
|
if torch.cuda.is_available(): |
|
model = model.to("cuda") |
|
|
|
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
output_ids = model.generate( |
|
token_ids.to(model.device), |
|
do_sample=True, |
|
max_new_tokens=128, |
|
temperature=0.7, |
|
pad_token_id=tokenizer.pad_token_id, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):]) |
|
output = output.replace("<NL>", "\n") |
|
print(output) |
|
"""分かりました。いくつかのおすすめを紹介します。 |
|
1. ハチ公像です。ハチ公像は、日本の観光スポットの1つとして人気があります。 |
|
2. スクランブル交差点です。多くの人々が行き交う大きな交差点で、観光客に人気のスポットです。 |
|
3. 109です。109は、ショッピングやエンターテイメント施設です。 |
|
4. 道玄坂です。道玄坂は、日本の商業地区である坂道です。</s>""" |
|
~~~~ |
|
|
|
# Tokenization |
|
The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. |
|
* The tokenizer has a vocabulary size of 32,000. |
|
* It uses sentencepiece's byte fallback feature to decompose unknown text pieces into UTF-8 byte pieces and to avoid producing `<UNK>` tokens. |
|
* sentencepiece's `--add_dummy_prefix` option was turned off so that a leading whitespace will not be prepended automatically. |
|
~~~ |
|
print(tokenizer.tokenize("吾輩は猫である")) |
|
# ['吾', '輩', 'は', '猫', 'である'] |
|
# instead of ['▁', '吾', '輩', 'は', '猫', 'である'] as in rinna/japanese-gpt-1b |
|
~~~ |
|
* sentencepiece's `--remove_extra_whitespaces` option was turned off so that leading, trailing, and duplicate whitespaces are reserved. |
|
~~~ |
|
print(tokenizer.tokenize(" 吾輩は 猫である ")) |
|
# ['▁', '▁', '吾', '輩', 'は', '▁', '▁', '猫', 'である', '▁', '▁', '▁'] |
|
# instead of ['▁', '吾', '輩', 'は', '▁猫', 'である'] as in rinna/japanese-gpt-1b |
|
~~~ |
|
* Don't forget to set `use_fast=False` to make the above features function correctly. |
|
~~~ |
|
good_tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b", use_fast=False) |
|
bad_tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b") |
|
|
|
print(good_tokenizer.decode(good_tokenizer.encode("გამარჯობა 吾輩は 猫である "))) |
|
# 'გამარჯობა 吾輩は 猫である </s>' |
|
print(bad_tokenizer.decode(bad_tokenizer.encode("გამარჯობა 吾輩は 猫である "))) |
|
# 'გამარ[UNK]ობა 吾輩は 猫である </s>' |
|
~~~ |
|
|
|
# Licenese |
|
[The MIT license](https://opensource.org/licenses/MIT) |
|
|