Text Generation
Transformers
PyTorch
Safetensors
Japanese
English
qwen
custom_code
nekomata-7b / README.md
tianyuz's picture
Update README.md
37b9b13
|
raw
history blame
5.41 kB
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
datasets:
- mc4
- wikipedia
- EleutherAI/pile
- oscar-corpus/colossal-oscar-1.0
- cc100
language:
- ja
- en
tags:
- qwen
inference: false
---
# `rinna/nekomata-7b`
![rinna-icon](./rinna.png)
# Overview
We conduct continual pre-training of [qwen-7b](https://huggingface.co/Qwen/Qwen-7B) on **30B** tokens from a mixture of Japanese and English datasets. The continual pre-training significantly improves the model's performance on Japanese tasks. It also enjoys the following great features provided by the original Qwen model.
* The inclusive Qwen vocabulary (vocab size > 150k) enables the model to processs Japanese texts much more efficiently than the previously released [youri series](https://huggingface.co/collections/rinna/youri-7b-654053610cb8e9d8e6289efc).
* The model supports a maximum sequence length of 32768.
The name `nekomata` comes from the Japanese word [`猫又/ねこまた/Nekomata`](https://ja.wikipedia.org/wiki/%E7%8C%AB%E5%8F%88), which is a kind of Japanese mythical creature ([`妖怪/ようかい/Youkai`](https://ja.wikipedia.org/wiki/%E5%A6%96%E6%80%AA)).
* **Library**
The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox).
* **Model architecture**
A 32-layer, 4096-hidden-size transformer-based language model. Please refer to the [Qwen paper](https://arxiv.org/abs/2309.16609) for architecture details.
* **Continual pre-training**
The model was initialized with the [qwen-7b](https://huggingface.co/Qwen/Qwen-7B) model and continually trained on around **30B** tokens from a mixture of the following corpora
- [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz)
- [Japanese C4](https://huggingface.co/datasets/mc4)
- [Japanese OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0)
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
- [Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
- rinna curated Japanese dataset
* **Authors**
- [Tianyu Zhao](https://huggingface.co/tianyuz)
- [Akio Kaga](https://huggingface.co/rakaga)
- [Kei Sawada](https://huggingface.co/keisawada)
---
# Benchmarking
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).
---
# How to use the model
~~~~python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("rinna/nekomata-7b", trust_remote_code=True)
# Use GPU with bf16
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="auto", trust_remote_code=True, bf16=True)
# Use GPU with fp16
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="auto", trust_remote_code=True, fp16=True)
# Use CPU
# model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="cpu", trust_remote_code=True)
# Automatically select device and precision
model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="auto", trust_remote_code=True)
text = "西田幾多郎は、"
token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=200,
min_new_tokens=200,
do_sample=True,
temperature=1.0,
top_p=0.95,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0])
print(output)
~~~~
---
# Tokenization
The model uses the original Qwen tokenizer. It augments the [`cl100k` tiktoken tokenizer](https://github.com/openai/tiktoken) and has a vocabulary size of 151,936. The inclusive vocabulary helps the model to reach a better tokenization efficiency, especially for Japanese texts.
We compared the `Qwen` tokenizer (as used in `nekomata`) and the `llama-2` tokenizer (as used in `youri`) on different text collections and found that the Qwen tokenizer achieves a much better byte2token rate (i.e. the average number of tokens produced from 1 byte of text) as following. A lower byte2token rate indicates a better tokenization efficiency.
| Tokenizer | Japanese | English | Multilingual |
| --- | --- | --- | --- |
| Qwen | 0.24 | 0.27 | 0.27 |
| llama-2 | 0.40 | 0.29 | 0.36 |
---
# How to cite
~~~
@misc{RinnaNekomata7b,
url={https://huggingface.co/rinna/nekomata-7b},
title={rinna/nekomata-7b},
author={Zhao, Tianyu and Kaga, Akio and Sawada, Kei}
}
~~~
---
# Citations
~~~
@software{gpt-neox-library,
title = {{GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch}},
author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel},
url = {https://www.github.com/eleutherai/gpt-neox},
doi = {10.5281/zenodo.5879544},
month = {8},
year = {2021},
version = {0.0.1},
}
~~~
---
# License
[Tongyi Qianwen LICENSE AGREEMENT](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)