Finetuning

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the IITB English to Hindi dataset. source group: English target group: Hindi

Model description

meta-llama/Llama-2-7b-hf finetuned for translation task in Hindi language

Training and evaluation data

cfilt/iitb-english-hindi

Training hyperparameters

The following hyperparameters were used during training:

  • num_train_epochs=1
  • per_device_train_batch_size=4
  • per_device_eval_batch_size = 4
  • gradient_accumulation_steps=1
  • optim="paged_adamw_32bit"
  • learning_rate=2e-4
  • weight_decay=0.001
  • fp16=True
  • max_grad_norm=0.3
  • max_steps=-1
  • warmup_ratio=0.03
  • group_by_length=True
  • lr_scheduler_type="constant"

Benchamark Evaluation

  • BLEU score on Tatoeba: 12.605968092174914
  • BLUE score on IN-22: 25.893729634826876

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float16

Framework versions

  • PEFT 0.4.0
  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for ritika-kumar/finetuned-llama2-7b-en-hi

Adapter
(1843)
this model

Dataset used to train ritika-kumar/finetuned-llama2-7b-en-hi