|
--- |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: If the Probable Cause Committee determines that charges should be filed, the |
|
respondent is notified of the specific nature of the charges and the Board's proposed |
|
settlement of the issues. Said notice shall be sent by certified mail, return |
|
receipt requested, to the respondent's last known address. If a hearing is to |
|
be scheduled, the notice shall be sent by certified mail, return receipt requested, |
|
to the respondent's last known address not less than ten (10) days before the |
|
date of the scheduled hearing. The Board will conduct the hearing with the assistance |
|
of a hearing officer, who will hear all competent and relevant evidence in support |
|
of the charges. The hearing will be conducted in accordance with the Alabama Administrative |
|
Procedures Act, Section 41-22-13, Code of Ala. 1975. Upon conclusion of the hearing, |
|
the members of the Board (excluding the Probable Cause Committee Board member) |
|
will determine the appropriate action to be taken, and shall notify, or cause |
|
to be notified, the respondent of such action. If the Board suspends or revokes |
|
a registration, or issues a reprimand or fine against the respondent, he or she |
|
may appeal to the Circuit Court of Montgomery County, Alabama. |
|
- text: Definitions governing the construction of this subchapter can be found in |
|
Chapter 1, Section 790 of this subdivision. |
|
- text: Any decision to deny, restrict or limit an inmate of any right, service, item |
|
or article, guaranteed an inmate by the provisions of this Part, shall be done |
|
in accordance with section 7075.5 of this Title. |
|
- text: 'After a port drayage motor carrier has been placed on the public list, the |
|
Labor Commissioner shall remove the motor carrier from the list within 15 business |
|
days upon the following: (a) The Labor Commissioner''s Office determines after |
|
review of submitted documents specified in subsections (1), (2), and (3) that |
|
there has been full payment of an unsatisfied judgment or any other final liability |
|
for all violations identified in Labor Code sections 2810.4(b)(1)(A)-(B) or that |
|
the port drayage motor carrier has entered into an approved settlement dispensing |
|
of the judgment or liability; or, in the case of a subsequent liability against |
|
a prior offender, the prior offender prevailed in an appeal. (1) A port drayage |
|
motor carrier shall present such proof by submitting a written statement under |
|
penalty of perjury stating the basis for removal of the listing, along with the |
|
accompanying documentation specified in subsections (2) and (3), as applicable, |
|
by mail to the Labor Commissioner''s Office, Attn: SB 1402 Proof of Payment or |
|
Settlement, 1500 Hughes Way, Suite C-202, Long Beach, CA 90810, or electronically |
|
in pdf format via email to: [email protected]. (2) For purposes of sufficiently |
|
documenting the payment or satisfaction of a judgment, tax assessment, or tax |
|
lien or a citation or ODA, the port drayage motor carrier shall identify and provide |
|
the documentation required under Section 13878, as applicable. (3) For purposes |
|
of sufficiently documenting a disposition regarding a port drayage motor carrier |
|
who is a prior offender who prevailed on appeal from a subsequent non-final judgment |
|
or ruling or final citation or ODA, the motor carrier shall identify and provide |
|
a conformed copy of the final judgment, ruling, citation, tax assessment, tax, |
|
order, decision, or award which indicates the final disposition on the appeal. |
|
(4) The port drayage motor carrier shall also provide documentation to show that |
|
violations of any labor or employment law or regulation subject to a final judgment |
|
or final citation or ODA have been sufficiently abated. This documentation shall |
|
include: a statement under penalty of perjury that the port drayage motor carrier |
|
does not currently engage in the labor practices identified as unlawful in the |
|
final judgment, final citation or ODA, and a description of the steps the motor |
|
carrier took to abate the violation(s). Subject to the Labor Commissioner''s request, |
|
the agency may determine whether an applicable violation was abated by reviewing |
|
any documents the motor carrier is required to maintain under the Labor Code, |
|
wage orders, or any other applicable law. (b) The Labor Commissioner''s Office |
|
will inform the port drayage motor carrier by letter of the agency''s determination |
|
of whether the motor carrier has presented sufficient proof to merit removal from |
|
the public list. (c) If a port drayage motor carrier on the public list has multiple |
|
liability determinations posted on the public list, a separate request for removal |
|
must be provided for each determination. Each removal request will be considered |
|
individually and only the liability determination that is the subject of that |
|
removal request may be removed.' |
|
- text: '(Repealed). Author: Michael E. Mason, CPA' |
|
inference: true |
|
--- |
|
|
|
# SetFit |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 5000 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("rkoh/setfit-bert") |
|
# Run inference |
|
preds = model("(Repealed). Author: Michael E. Mason, CPA") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----------|:-----------------|:--------------| |
|
| Word count | tensor(1) | tensor(370.1842) | tensor(52538) | |
|
|
|
| Label | Training Sample Count | |
|
|:-------------------------------|:----------------------| |
|
| Purpose - Regulatory Objective | 0 | |
|
| Scope and Applicability | 0 | |
|
| Authority and Legal Basis | 0 | |
|
| Administrative Details | 0 | |
|
| Non-Purpose | 0 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (32, 32) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0002 | 1 | 0.1006 | - | |
|
| 0.0016 | 10 | 0.0759 | - | |
|
| 0.0032 | 20 | 0.0767 | - | |
|
| 0.0048 | 30 | 0.0852 | - | |
|
| 0.0064 | 40 | 0.0765 | - | |
|
| 0.008 | 50 | 0.078 | - | |
|
| 0.0096 | 60 | 0.0734 | - | |
|
| 0.0112 | 70 | 0.0687 | - | |
|
| 0.0128 | 80 | 0.0566 | - | |
|
| 0.0144 | 90 | 0.065 | - | |
|
| 0.016 | 100 | 0.0583 | - | |
|
| 0.0176 | 110 | 0.0584 | - | |
|
| 0.0192 | 120 | 0.0466 | - | |
|
| 0.0208 | 130 | 0.0661 | - | |
|
| 0.0224 | 140 | 0.0583 | - | |
|
| 0.024 | 150 | 0.0494 | - | |
|
| 0.0256 | 160 | 0.0451 | - | |
|
| 0.0272 | 170 | 0.0443 | - | |
|
| 0.0288 | 180 | 0.0409 | - | |
|
| 0.0304 | 190 | 0.0513 | - | |
|
| 0.032 | 200 | 0.0415 | - | |
|
| 0.0336 | 210 | 0.0413 | - | |
|
| 0.0352 | 220 | 0.0478 | - | |
|
| 0.0368 | 230 | 0.0319 | - | |
|
| 0.0384 | 240 | 0.0273 | - | |
|
| 0.04 | 250 | 0.0418 | - | |
|
| 0.0416 | 260 | 0.0415 | - | |
|
| 0.0432 | 270 | 0.0454 | - | |
|
| 0.0448 | 280 | 0.0333 | - | |
|
| 0.0464 | 290 | 0.0341 | - | |
|
| 0.048 | 300 | 0.0504 | - | |
|
| 0.0496 | 310 | 0.0296 | - | |
|
| 0.0512 | 320 | 0.0293 | - | |
|
| 0.0528 | 330 | 0.0263 | - | |
|
| 0.0544 | 340 | 0.0292 | - | |
|
| 0.056 | 350 | 0.0394 | - | |
|
| 0.0576 | 360 | 0.0246 | - | |
|
| 0.0592 | 370 | 0.0419 | - | |
|
| 0.0608 | 380 | 0.0251 | - | |
|
| 0.0624 | 390 | 0.02 | - | |
|
| 0.064 | 400 | 0.0397 | - | |
|
| 0.0656 | 410 | 0.0151 | - | |
|
| 0.0672 | 420 | 0.0312 | - | |
|
| 0.0688 | 430 | 0.0336 | - | |
|
| 0.0704 | 440 | 0.0194 | - | |
|
| 0.072 | 450 | 0.0251 | - | |
|
| 0.0736 | 460 | 0.0167 | - | |
|
| 0.0752 | 470 | 0.0203 | - | |
|
| 0.0768 | 480 | 0.0158 | - | |
|
| 0.0784 | 490 | 0.0165 | - | |
|
| 0.08 | 500 | 0.0181 | - | |
|
| 0.0816 | 510 | 0.0153 | - | |
|
| 0.0832 | 520 | 0.0301 | - | |
|
| 0.0848 | 530 | 0.0243 | - | |
|
| 0.0864 | 540 | 0.0271 | - | |
|
| 0.088 | 550 | 0.0185 | - | |
|
| 0.0896 | 560 | 0.0221 | - | |
|
| 0.0912 | 570 | 0.0171 | - | |
|
| 0.0928 | 580 | 0.0284 | - | |
|
| 0.0944 | 590 | 0.0335 | - | |
|
| 0.096 | 600 | 0.0163 | - | |
|
| 0.0976 | 610 | 0.0199 | - | |
|
| 0.0992 | 620 | 0.0212 | - | |
|
| 0.1008 | 630 | 0.0253 | - | |
|
| 0.1024 | 640 | 0.0173 | - | |
|
| 0.104 | 650 | 0.0376 | - | |
|
| 0.1056 | 660 | 0.0135 | - | |
|
| 0.1072 | 670 | 0.0216 | - | |
|
| 0.1088 | 680 | 0.0279 | - | |
|
| 0.1104 | 690 | 0.0126 | - | |
|
| 0.112 | 700 | 0.0144 | - | |
|
| 0.1136 | 710 | 0.0149 | - | |
|
| 0.1152 | 720 | 0.0186 | - | |
|
| 0.1168 | 730 | 0.0084 | - | |
|
| 0.1184 | 740 | 0.0231 | - | |
|
| 0.12 | 750 | 0.0152 | - | |
|
| 0.1216 | 760 | 0.0174 | - | |
|
| 0.1232 | 770 | 0.0235 | - | |
|
| 0.1248 | 780 | 0.0144 | - | |
|
| 0.1264 | 790 | 0.0081 | - | |
|
| 0.128 | 800 | 0.0209 | - | |
|
| 0.1296 | 810 | 0.014 | - | |
|
| 0.1312 | 820 | 0.0208 | - | |
|
| 0.1328 | 830 | 0.0146 | - | |
|
| 0.1344 | 840 | 0.0159 | - | |
|
| 0.136 | 850 | 0.0119 | - | |
|
| 0.1376 | 860 | 0.0251 | - | |
|
| 0.1392 | 870 | 0.0153 | - | |
|
| 0.1408 | 880 | 0.0077 | - | |
|
| 0.1424 | 890 | 0.0136 | - | |
|
| 0.144 | 900 | 0.0131 | - | |
|
| 0.1456 | 910 | 0.0058 | - | |
|
| 0.1472 | 920 | 0.0146 | - | |
|
| 0.1488 | 930 | 0.0186 | - | |
|
| 0.1504 | 940 | 0.014 | - | |
|
| 0.152 | 950 | 0.0127 | - | |
|
| 0.1536 | 960 | 0.0074 | - | |
|
| 0.1552 | 970 | 0.0246 | - | |
|
| 0.1568 | 980 | 0.0137 | - | |
|
| 0.1584 | 990 | 0.0061 | - | |
|
| 0.16 | 1000 | 0.0067 | - | |
|
| 0.1616 | 1010 | 0.0125 | - | |
|
| 0.1632 | 1020 | 0.01 | - | |
|
| 0.1648 | 1030 | 0.0116 | - | |
|
| 0.1664 | 1040 | 0.0098 | - | |
|
| 0.168 | 1050 | 0.0116 | - | |
|
| 0.1696 | 1060 | 0.0051 | - | |
|
| 0.1712 | 1070 | 0.0014 | - | |
|
| 0.1728 | 1080 | 0.0056 | - | |
|
| 0.1744 | 1090 | 0.0009 | - | |
|
| 0.176 | 1100 | 0.0074 | - | |
|
| 0.1776 | 1110 | 0.0019 | - | |
|
| 0.1792 | 1120 | 0.0022 | - | |
|
| 0.1808 | 1130 | 0.0063 | - | |
|
| 0.1824 | 1140 | 0.0059 | - | |
|
| 0.184 | 1150 | 0.0065 | - | |
|
| 0.1856 | 1160 | 0.0151 | - | |
|
| 0.1872 | 1170 | 0.0034 | - | |
|
| 0.1888 | 1180 | 0.0033 | - | |
|
| 0.1904 | 1190 | 0.0085 | - | |
|
| 0.192 | 1200 | 0.0041 | - | |
|
| 0.1936 | 1210 | 0.0084 | - | |
|
| 0.1952 | 1220 | 0.004 | - | |
|
| 0.1968 | 1230 | 0.0148 | - | |
|
| 0.1984 | 1240 | 0.0111 | - | |
|
| 0.2 | 1250 | 0.0125 | - | |
|
| 0.2016 | 1260 | 0.0086 | - | |
|
| 0.2032 | 1270 | 0.0042 | - | |
|
| 0.2048 | 1280 | 0.0041 | - | |
|
| 0.2064 | 1290 | 0.0078 | - | |
|
| 0.208 | 1300 | 0.0042 | - | |
|
| 0.2096 | 1310 | 0.0078 | - | |
|
| 0.2112 | 1320 | 0.0065 | - | |
|
| 0.2128 | 1330 | 0.0079 | - | |
|
| 0.2144 | 1340 | 0.0157 | - | |
|
| 0.216 | 1350 | 0.0086 | - | |
|
| 0.2176 | 1360 | 0.0057 | - | |
|
| 0.2192 | 1370 | 0.0025 | - | |
|
| 0.2208 | 1380 | 0.0057 | - | |
|
| 0.2224 | 1390 | 0.0051 | - | |
|
| 0.224 | 1400 | 0.0054 | - | |
|
| 0.2256 | 1410 | 0.0048 | - | |
|
| 0.2272 | 1420 | 0.01 | - | |
|
| 0.2288 | 1430 | 0.0087 | - | |
|
| 0.2304 | 1440 | 0.0053 | - | |
|
| 0.232 | 1450 | 0.0046 | - | |
|
| 0.2336 | 1460 | 0.004 | - | |
|
| 0.2352 | 1470 | 0.0062 | - | |
|
| 0.2368 | 1480 | 0.0088 | - | |
|
| 0.2384 | 1490 | 0.0093 | - | |
|
| 0.24 | 1500 | 0.0005 | - | |
|
| 0.2416 | 1510 | 0.0074 | - | |
|
| 0.2432 | 1520 | 0.0042 | - | |
|
| 0.2448 | 1530 | 0.0072 | - | |
|
| 0.2464 | 1540 | 0.0007 | - | |
|
| 0.248 | 1550 | 0.005 | - | |
|
| 0.2496 | 1560 | 0.002 | - | |
|
| 0.2512 | 1570 | 0.001 | - | |
|
| 0.2528 | 1580 | 0.0062 | - | |
|
| 0.2544 | 1590 | 0.0004 | - | |
|
| 0.256 | 1600 | 0.0009 | - | |
|
| 0.2576 | 1610 | 0.0041 | - | |
|
| 0.2592 | 1620 | 0.0119 | - | |
|
| 0.2608 | 1630 | 0.0011 | - | |
|
| 0.2624 | 1640 | 0.0104 | - | |
|
| 0.264 | 1650 | 0.0037 | - | |
|
| 0.2656 | 1660 | 0.0005 | - | |
|
| 0.2672 | 1670 | 0.004 | - | |
|
| 0.2688 | 1680 | 0.0036 | - | |
|
| 0.2704 | 1690 | 0.0037 | - | |
|
| 0.272 | 1700 | 0.0013 | - | |
|
| 0.2736 | 1710 | 0.0004 | - | |
|
| 0.2752 | 1720 | 0.0006 | - | |
|
| 0.2768 | 1730 | 0.0065 | - | |
|
| 0.2784 | 1740 | 0.0033 | - | |
|
| 0.28 | 1750 | 0.0009 | - | |
|
| 0.2816 | 1760 | 0.0117 | - | |
|
| 0.2832 | 1770 | 0.0033 | - | |
|
| 0.2848 | 1780 | 0.0032 | - | |
|
| 0.2864 | 1790 | 0.0037 | - | |
|
| 0.288 | 1800 | 0.0022 | - | |
|
| 0.2896 | 1810 | 0.0011 | - | |
|
| 0.2912 | 1820 | 0.0006 | - | |
|
| 0.2928 | 1830 | 0.0007 | - | |
|
| 0.2944 | 1840 | 0.0054 | - | |
|
| 0.296 | 1850 | 0.0007 | - | |
|
| 0.2976 | 1860 | 0.0035 | - | |
|
| 0.2992 | 1870 | 0.0038 | - | |
|
| 0.3008 | 1880 | 0.0075 | - | |
|
| 0.3024 | 1890 | 0.0017 | - | |
|
| 0.304 | 1900 | 0.0005 | - | |
|
| 0.3056 | 1910 | 0.0002 | - | |
|
| 0.3072 | 1920 | 0.0002 | - | |
|
| 0.3088 | 1930 | 0.0002 | - | |
|
| 0.3104 | 1940 | 0.0033 | - | |
|
| 0.312 | 1950 | 0.0085 | - | |
|
| 0.3136 | 1960 | 0.0004 | - | |
|
| 0.3152 | 1970 | 0.0005 | - | |
|
| 0.3168 | 1980 | 0.0002 | - | |
|
| 0.3184 | 1990 | 0.003 | - | |
|
| 0.32 | 2000 | 0.0007 | - | |
|
| 0.3216 | 2010 | 0.0009 | - | |
|
| 0.3232 | 2020 | 0.0003 | - | |
|
| 0.3248 | 2030 | 0.0012 | - | |
|
| 0.3264 | 2040 | 0.0086 | - | |
|
| 0.328 | 2050 | 0.001 | - | |
|
| 0.3296 | 2060 | 0.0009 | - | |
|
| 0.3312 | 2070 | 0.0029 | - | |
|
| 0.3328 | 2080 | 0.0033 | - | |
|
| 0.3344 | 2090 | 0.0005 | - | |
|
| 0.336 | 2100 | 0.0003 | - | |
|
| 0.3376 | 2110 | 0.0033 | - | |
|
| 0.3392 | 2120 | 0.0029 | - | |
|
| 0.3408 | 2130 | 0.0001 | - | |
|
| 0.3424 | 2140 | 0.0057 | - | |
|
| 0.344 | 2150 | 0.0001 | - | |
|
| 0.3456 | 2160 | 0.0002 | - | |
|
| 0.3472 | 2170 | 0.004 | - | |
|
| 0.3488 | 2180 | 0.002 | - | |
|
| 0.3504 | 2190 | 0.0073 | - | |
|
| 0.352 | 2200 | 0.0004 | - | |
|
| 0.3536 | 2210 | 0.0006 | - | |
|
| 0.3552 | 2220 | 0.0004 | - | |
|
| 0.3568 | 2230 | 0.0032 | - | |
|
| 0.3584 | 2240 | 0.007 | - | |
|
| 0.36 | 2250 | 0.0096 | - | |
|
| 0.3616 | 2260 | 0.0032 | - | |
|
| 0.3632 | 2270 | 0.0006 | - | |
|
| 0.3648 | 2280 | 0.0002 | - | |
|
| 0.3664 | 2290 | 0.0032 | - | |
|
| 0.368 | 2300 | 0.0002 | - | |
|
| 0.3696 | 2310 | 0.0025 | - | |
|
| 0.3712 | 2320 | 0.0002 | - | |
|
| 0.3728 | 2330 | 0.0053 | - | |
|
| 0.3744 | 2340 | 0.0017 | - | |
|
| 0.376 | 2350 | 0.0013 | - | |
|
| 0.3776 | 2360 | 0.0001 | - | |
|
| 0.3792 | 2370 | 0.0032 | - | |
|
| 0.3808 | 2380 | 0.0002 | - | |
|
| 0.3824 | 2390 | 0.0019 | - | |
|
| 0.384 | 2400 | 0.0015 | - | |
|
| 0.3856 | 2410 | 0.0009 | - | |
|
| 0.3872 | 2420 | 0.0006 | - | |
|
| 0.3888 | 2430 | 0.0032 | - | |
|
| 0.3904 | 2440 | 0.0033 | - | |
|
| 0.392 | 2450 | 0.0003 | - | |
|
| 0.3936 | 2460 | 0.0003 | - | |
|
| 0.3952 | 2470 | 0.0016 | - | |
|
| 0.3968 | 2480 | 0.0065 | - | |
|
| 0.3984 | 2490 | 0.0011 | - | |
|
| 0.4 | 2500 | 0.0032 | - | |
|
| 0.4016 | 2510 | 0.0045 | - | |
|
| 0.4032 | 2520 | 0.0001 | - | |
|
| 0.4048 | 2530 | 0.0004 | - | |
|
| 0.4064 | 2540 | 0.0001 | - | |
|
| 0.408 | 2550 | 0.0027 | - | |
|
| 0.4096 | 2560 | 0.0032 | - | |
|
| 0.4112 | 2570 | 0.0034 | - | |
|
| 0.4128 | 2580 | 0.0057 | - | |
|
| 0.4144 | 2590 | 0.0029 | - | |
|
| 0.416 | 2600 | 0.0008 | - | |
|
| 0.4176 | 2610 | 0.0002 | - | |
|
| 0.4192 | 2620 | 0.0033 | - | |
|
| 0.4208 | 2630 | 0.0004 | - | |
|
| 0.4224 | 2640 | 0.0057 | - | |
|
| 0.424 | 2650 | 0.0001 | - | |
|
| 0.4256 | 2660 | 0.0048 | - | |
|
| 0.4272 | 2670 | 0.0043 | - | |
|
| 0.4288 | 2680 | 0.0011 | - | |
|
| 0.4304 | 2690 | 0.0053 | - | |
|
| 0.432 | 2700 | 0.0001 | - | |
|
| 0.4336 | 2710 | 0.0045 | - | |
|
| 0.4352 | 2720 | 0.0032 | - | |
|
| 0.4368 | 2730 | 0.0034 | - | |
|
| 0.4384 | 2740 | 0.0031 | - | |
|
| 0.44 | 2750 | 0.0065 | - | |
|
| 0.4416 | 2760 | 0.0013 | - | |
|
| 0.4432 | 2770 | 0.0027 | - | |
|
| 0.4448 | 2780 | 0.0014 | - | |
|
| 0.4464 | 2790 | 0.0036 | - | |
|
| 0.448 | 2800 | 0.0009 | - | |
|
| 0.4496 | 2810 | 0.0053 | - | |
|
| 0.4512 | 2820 | 0.0001 | - | |
|
| 0.4528 | 2830 | 0.0005 | - | |
|
| 0.4544 | 2840 | 0.0006 | - | |
|
| 0.456 | 2850 | 0.0015 | - | |
|
| 0.4576 | 2860 | 0.0028 | - | |
|
| 0.4592 | 2870 | 0.0006 | - | |
|
| 0.4608 | 2880 | 0.0001 | - | |
|
| 0.4624 | 2890 | 0.0024 | - | |
|
| 0.464 | 2900 | 0.0012 | - | |
|
| 0.4656 | 2910 | 0.0003 | - | |
|
| 0.4672 | 2920 | 0.0028 | - | |
|
| 0.4688 | 2930 | 0.0022 | - | |
|
| 0.4704 | 2940 | 0.0002 | - | |
|
| 0.472 | 2950 | 0.0006 | - | |
|
| 0.4736 | 2960 | 0.0002 | - | |
|
| 0.4752 | 2970 | 0.0034 | - | |
|
| 0.4768 | 2980 | 0.0032 | - | |
|
| 0.4784 | 2990 | 0.0001 | - | |
|
| 0.48 | 3000 | 0.0001 | - | |
|
| 0.4816 | 3010 | 0.0003 | - | |
|
| 0.4832 | 3020 | 0.0001 | - | |
|
| 0.4848 | 3030 | 0.0011 | - | |
|
| 0.4864 | 3040 | 0.0001 | - | |
|
| 0.488 | 3050 | 0.0003 | - | |
|
| 0.4896 | 3060 | 0.0031 | - | |
|
| 0.4912 | 3070 | 0.0032 | - | |
|
| 0.4928 | 3080 | 0.0028 | - | |
|
| 0.4944 | 3090 | 0.0032 | - | |
|
| 0.496 | 3100 | 0.0002 | - | |
|
| 0.4976 | 3110 | 0.0001 | - | |
|
| 0.4992 | 3120 | 0.0008 | - | |
|
| 0.5008 | 3130 | 0.0028 | - | |
|
| 0.5024 | 3140 | 0.0001 | - | |
|
| 0.504 | 3150 | 0.0001 | - | |
|
| 0.5056 | 3160 | 0.0001 | - | |
|
| 0.5072 | 3170 | 0.0007 | - | |
|
| 0.5088 | 3180 | 0.0054 | - | |
|
| 0.5104 | 3190 | 0.0001 | - | |
|
| 0.512 | 3200 | 0.0001 | - | |
|
| 0.5136 | 3210 | 0.0001 | - | |
|
| 0.5152 | 3220 | 0.0001 | - | |
|
| 0.5168 | 3230 | 0.0027 | - | |
|
| 0.5184 | 3240 | 0.0001 | - | |
|
| 0.52 | 3250 | 0.0028 | - | |
|
| 0.5216 | 3260 | 0.0001 | - | |
|
| 0.5232 | 3270 | 0.0001 | - | |
|
| 0.5248 | 3280 | 0.0007 | - | |
|
| 0.5264 | 3290 | 0.0001 | - | |
|
| 0.528 | 3300 | 0.0001 | - | |
|
| 0.5296 | 3310 | 0.0001 | - | |
|
| 0.5312 | 3320 | 0.0001 | - | |
|
| 0.5328 | 3330 | 0.004 | - | |
|
| 0.5344 | 3340 | 0.0001 | - | |
|
| 0.536 | 3350 | 0.0049 | - | |
|
| 0.5376 | 3360 | 0.0034 | - | |
|
| 0.5392 | 3370 | 0.0004 | - | |
|
| 0.5408 | 3380 | 0.0001 | - | |
|
| 0.5424 | 3390 | 0.001 | - | |
|
| 0.544 | 3400 | 0.0023 | - | |
|
| 0.5456 | 3410 | 0.0019 | - | |
|
| 0.5472 | 3420 | 0.0001 | - | |
|
| 0.5488 | 3430 | 0.0027 | - | |
|
| 0.5504 | 3440 | 0.0002 | - | |
|
| 0.552 | 3450 | 0.0016 | - | |
|
| 0.5536 | 3460 | 0.0001 | - | |
|
| 0.5552 | 3470 | 0.0001 | - | |
|
| 0.5568 | 3480 | 0.0005 | - | |
|
| 0.5584 | 3490 | 0.0 | - | |
|
| 0.56 | 3500 | 0.0001 | - | |
|
| 0.5616 | 3510 | 0.0001 | - | |
|
| 0.5632 | 3520 | 0.0001 | - | |
|
| 0.5648 | 3530 | 0.0001 | - | |
|
| 0.5664 | 3540 | 0.003 | - | |
|
| 0.568 | 3550 | 0.0001 | - | |
|
| 0.5696 | 3560 | 0.0002 | - | |
|
| 0.5712 | 3570 | 0.0001 | - | |
|
| 0.5728 | 3580 | 0.0001 | - | |
|
| 0.5744 | 3590 | 0.0002 | - | |
|
| 0.576 | 3600 | 0.0 | - | |
|
| 0.5776 | 3610 | 0.0001 | - | |
|
| 0.5792 | 3620 | 0.0034 | - | |
|
| 0.5808 | 3630 | 0.0001 | - | |
|
| 0.5824 | 3640 | 0.0001 | - | |
|
| 0.584 | 3650 | 0.0001 | - | |
|
| 0.5856 | 3660 | 0.0001 | - | |
|
| 0.5872 | 3670 | 0.0003 | - | |
|
| 0.5888 | 3680 | 0.0031 | - | |
|
| 0.5904 | 3690 | 0.0001 | - | |
|
| 0.592 | 3700 | 0.0001 | - | |
|
| 0.5936 | 3710 | 0.003 | - | |
|
| 0.5952 | 3720 | 0.0002 | - | |
|
| 0.5968 | 3730 | 0.0031 | - | |
|
| 0.5984 | 3740 | 0.0001 | - | |
|
| 0.6 | 3750 | 0.0035 | - | |
|
| 0.6016 | 3760 | 0.0001 | - | |
|
| 0.6032 | 3770 | 0.003 | - | |
|
| 0.6048 | 3780 | 0.0033 | - | |
|
| 0.6064 | 3790 | 0.0026 | - | |
|
| 0.608 | 3800 | 0.0024 | - | |
|
| 0.6096 | 3810 | 0.0002 | - | |
|
| 0.6112 | 3820 | 0.0001 | - | |
|
| 0.6128 | 3830 | 0.0001 | - | |
|
| 0.6144 | 3840 | 0.0001 | - | |
|
| 0.616 | 3850 | 0.0001 | - | |
|
| 0.6176 | 3860 | 0.0022 | - | |
|
| 0.6192 | 3870 | 0.0001 | - | |
|
| 0.6208 | 3880 | 0.0004 | - | |
|
| 0.6224 | 3890 | 0.0066 | - | |
|
| 0.624 | 3900 | 0.0033 | - | |
|
| 0.6256 | 3910 | 0.0001 | - | |
|
| 0.6272 | 3920 | 0.0001 | - | |
|
| 0.6288 | 3930 | 0.0001 | - | |
|
| 0.6304 | 3940 | 0.0032 | - | |
|
| 0.632 | 3950 | 0.0003 | - | |
|
| 0.6336 | 3960 | 0.0031 | - | |
|
| 0.6352 | 3970 | 0.0001 | - | |
|
| 0.6368 | 3980 | 0.0001 | - | |
|
| 0.6384 | 3990 | 0.0001 | - | |
|
| 0.64 | 4000 | 0.0001 | - | |
|
| 0.6416 | 4010 | 0.0003 | - | |
|
| 0.6432 | 4020 | 0.0001 | - | |
|
| 0.6448 | 4030 | 0.0029 | - | |
|
| 0.6464 | 4040 | 0.0001 | - | |
|
| 0.648 | 4050 | 0.0001 | - | |
|
| 0.6496 | 4060 | 0.0029 | - | |
|
| 0.6512 | 4070 | 0.0001 | - | |
|
| 0.6528 | 4080 | 0.0001 | - | |
|
| 0.6544 | 4090 | 0.0001 | - | |
|
| 0.656 | 4100 | 0.0001 | - | |
|
| 0.6576 | 4110 | 0.0001 | - | |
|
| 0.6592 | 4120 | 0.0001 | - | |
|
| 0.6608 | 4130 | 0.0001 | - | |
|
| 0.6624 | 4140 | 0.0001 | - | |
|
| 0.664 | 4150 | 0.0001 | - | |
|
| 0.6656 | 4160 | 0.0023 | - | |
|
| 0.6672 | 4170 | 0.0002 | - | |
|
| 0.6688 | 4180 | 0.0002 | - | |
|
| 0.6704 | 4190 | 0.0014 | - | |
|
| 0.672 | 4200 | 0.0004 | - | |
|
| 0.6736 | 4210 | 0.0035 | - | |
|
| 0.6752 | 4220 | 0.0001 | - | |
|
| 0.6768 | 4230 | 0.0005 | - | |
|
| 0.6784 | 4240 | 0.0001 | - | |
|
| 0.68 | 4250 | 0.0029 | - | |
|
| 0.6816 | 4260 | 0.0001 | - | |
|
| 0.6832 | 4270 | 0.0001 | - | |
|
| 0.6848 | 4280 | 0.0001 | - | |
|
| 0.6864 | 4290 | 0.0001 | - | |
|
| 0.688 | 4300 | 0.0003 | - | |
|
| 0.6896 | 4310 | 0.0002 | - | |
|
| 0.6912 | 4320 | 0.0001 | - | |
|
| 0.6928 | 4330 | 0.0 | - | |
|
| 0.6944 | 4340 | 0.0 | - | |
|
| 0.696 | 4350 | 0.0 | - | |
|
| 0.6976 | 4360 | 0.0001 | - | |
|
| 0.6992 | 4370 | 0.0 | - | |
|
| 0.7008 | 4380 | 0.0 | - | |
|
| 0.7024 | 4390 | 0.0 | - | |
|
| 0.704 | 4400 | 0.0 | - | |
|
| 0.7056 | 4410 | 0.0 | - | |
|
| 0.7072 | 4420 | 0.0 | - | |
|
| 0.7088 | 4430 | 0.0 | - | |
|
| 0.7104 | 4440 | 0.0001 | - | |
|
| 0.712 | 4450 | 0.0001 | - | |
|
| 0.7136 | 4460 | 0.0 | - | |
|
| 0.7152 | 4470 | 0.0 | - | |
|
| 0.7168 | 4480 | 0.0001 | - | |
|
| 0.7184 | 4490 | 0.0 | - | |
|
| 0.72 | 4500 | 0.0 | - | |
|
| 0.7216 | 4510 | 0.0 | - | |
|
| 0.7232 | 4520 | 0.0 | - | |
|
| 0.7248 | 4530 | 0.0 | - | |
|
| 0.7264 | 4540 | 0.0001 | - | |
|
| 0.728 | 4550 | 0.0058 | - | |
|
| 0.7296 | 4560 | 0.0001 | - | |
|
| 0.7312 | 4570 | 0.0002 | - | |
|
| 0.7328 | 4580 | 0.0001 | - | |
|
| 0.7344 | 4590 | 0.0 | - | |
|
| 0.736 | 4600 | 0.0001 | - | |
|
| 0.7376 | 4610 | 0.0001 | - | |
|
| 0.7392 | 4620 | 0.0 | - | |
|
| 0.7408 | 4630 | 0.0002 | - | |
|
| 0.7424 | 4640 | 0.0 | - | |
|
| 0.744 | 4650 | 0.0 | - | |
|
| 0.7456 | 4660 | 0.0004 | - | |
|
| 0.7472 | 4670 | 0.0 | - | |
|
| 0.7488 | 4680 | 0.0001 | - | |
|
| 0.7504 | 4690 | 0.0 | - | |
|
| 0.752 | 4700 | 0.0 | - | |
|
| 0.7536 | 4710 | 0.0001 | - | |
|
| 0.7552 | 4720 | 0.0001 | - | |
|
| 0.7568 | 4730 | 0.0 | - | |
|
| 0.7584 | 4740 | 0.0037 | - | |
|
| 0.76 | 4750 | 0.0001 | - | |
|
| 0.7616 | 4760 | 0.0032 | - | |
|
| 0.7632 | 4770 | 0.0 | - | |
|
| 0.7648 | 4780 | 0.0 | - | |
|
| 0.7664 | 4790 | 0.0001 | - | |
|
| 0.768 | 4800 | 0.0031 | - | |
|
| 0.7696 | 4810 | 0.0001 | - | |
|
| 0.7712 | 4820 | 0.0002 | - | |
|
| 0.7728 | 4830 | 0.0 | - | |
|
| 0.7744 | 4840 | 0.0001 | - | |
|
| 0.776 | 4850 | 0.0001 | - | |
|
| 0.7776 | 4860 | 0.0002 | - | |
|
| 0.7792 | 4870 | 0.0 | - | |
|
| 0.7808 | 4880 | 0.0 | - | |
|
| 0.7824 | 4890 | 0.0001 | - | |
|
| 0.784 | 4900 | 0.0 | - | |
|
| 0.7856 | 4910 | 0.0 | - | |
|
| 0.7872 | 4920 | 0.0001 | - | |
|
| 0.7888 | 4930 | 0.0 | - | |
|
| 0.7904 | 4940 | 0.0 | - | |
|
| 0.792 | 4950 | 0.0001 | - | |
|
| 0.7936 | 4960 | 0.0 | - | |
|
| 0.7952 | 4970 | 0.0001 | - | |
|
| 0.7968 | 4980 | 0.0 | - | |
|
| 0.7984 | 4990 | 0.0029 | - | |
|
| 0.8 | 5000 | 0.0001 | - | |
|
| 0.8016 | 5010 | 0.0 | - | |
|
| 0.8032 | 5020 | 0.0001 | - | |
|
| 0.8048 | 5030 | 0.0005 | - | |
|
| 0.8064 | 5040 | 0.0 | - | |
|
| 0.808 | 5050 | 0.0 | - | |
|
| 0.8096 | 5060 | 0.0014 | - | |
|
| 0.8112 | 5070 | 0.0031 | - | |
|
| 0.8128 | 5080 | 0.0 | - | |
|
| 0.8144 | 5090 | 0.0001 | - | |
|
| 0.816 | 5100 | 0.0 | - | |
|
| 0.8176 | 5110 | 0.0001 | - | |
|
| 0.8192 | 5120 | 0.0001 | - | |
|
| 0.8208 | 5130 | 0.0 | - | |
|
| 0.8224 | 5140 | 0.0 | - | |
|
| 0.824 | 5150 | 0.0001 | - | |
|
| 0.8256 | 5160 | 0.0 | - | |
|
| 0.8272 | 5170 | 0.0 | - | |
|
| 0.8288 | 5180 | 0.0 | - | |
|
| 0.8304 | 5190 | 0.0006 | - | |
|
| 0.832 | 5200 | 0.006 | - | |
|
| 0.8336 | 5210 | 0.0032 | - | |
|
| 0.8352 | 5220 | 0.0001 | - | |
|
| 0.8368 | 5230 | 0.0 | - | |
|
| 0.8384 | 5240 | 0.0 | - | |
|
| 0.84 | 5250 | 0.0 | - | |
|
| 0.8416 | 5260 | 0.0031 | - | |
|
| 0.8432 | 5270 | 0.0001 | - | |
|
| 0.8448 | 5280 | 0.0017 | - | |
|
| 0.8464 | 5290 | 0.0009 | - | |
|
| 0.848 | 5300 | 0.0001 | - | |
|
| 0.8496 | 5310 | 0.0001 | - | |
|
| 0.8512 | 5320 | 0.0004 | - | |
|
| 0.8528 | 5330 | 0.0 | - | |
|
| 0.8544 | 5340 | 0.003 | - | |
|
| 0.856 | 5350 | 0.0002 | - | |
|
| 0.8576 | 5360 | 0.0001 | - | |
|
| 0.8592 | 5370 | 0.0001 | - | |
|
| 0.8608 | 5380 | 0.0 | - | |
|
| 0.8624 | 5390 | 0.0001 | - | |
|
| 0.864 | 5400 | 0.0001 | - | |
|
| 0.8656 | 5410 | 0.0 | - | |
|
| 0.8672 | 5420 | 0.0 | - | |
|
| 0.8688 | 5430 | 0.0001 | - | |
|
| 0.8704 | 5440 | 0.0 | - | |
|
| 0.872 | 5450 | 0.0 | - | |
|
| 0.8736 | 5460 | 0.0 | - | |
|
| 0.8752 | 5470 | 0.0001 | - | |
|
| 0.8768 | 5480 | 0.0 | - | |
|
| 0.8784 | 5490 | 0.0 | - | |
|
| 0.88 | 5500 | 0.0 | - | |
|
| 0.8816 | 5510 | 0.0001 | - | |
|
| 0.8832 | 5520 | 0.0 | - | |
|
| 0.8848 | 5530 | 0.0 | - | |
|
| 0.8864 | 5540 | 0.0 | - | |
|
| 0.888 | 5550 | 0.0031 | - | |
|
| 0.8896 | 5560 | 0.0 | - | |
|
| 0.8912 | 5570 | 0.0001 | - | |
|
| 0.8928 | 5580 | 0.0 | - | |
|
| 0.8944 | 5590 | 0.0 | - | |
|
| 0.896 | 5600 | 0.0 | - | |
|
| 0.8976 | 5610 | 0.0001 | - | |
|
| 0.8992 | 5620 | 0.0 | - | |
|
| 0.9008 | 5630 | 0.0002 | - | |
|
| 0.9024 | 5640 | 0.0031 | - | |
|
| 0.904 | 5650 | 0.0 | - | |
|
| 0.9056 | 5660 | 0.0 | - | |
|
| 0.9072 | 5670 | 0.0 | - | |
|
| 0.9088 | 5680 | 0.0001 | - | |
|
| 0.9104 | 5690 | 0.0 | - | |
|
| 0.912 | 5700 | 0.0 | - | |
|
| 0.9136 | 5710 | 0.0 | - | |
|
| 0.9152 | 5720 | 0.0032 | - | |
|
| 0.9168 | 5730 | 0.0001 | - | |
|
| 0.9184 | 5740 | 0.0024 | - | |
|
| 0.92 | 5750 | 0.0 | - | |
|
| 0.9216 | 5760 | 0.0 | - | |
|
| 0.9232 | 5770 | 0.0017 | - | |
|
| 0.9248 | 5780 | 0.0 | - | |
|
| 0.9264 | 5790 | 0.0001 | - | |
|
| 0.928 | 5800 | 0.0001 | - | |
|
| 0.9296 | 5810 | 0.0 | - | |
|
| 0.9312 | 5820 | 0.0 | - | |
|
| 0.9328 | 5830 | 0.0 | - | |
|
| 0.9344 | 5840 | 0.0 | - | |
|
| 0.936 | 5850 | 0.0 | - | |
|
| 0.9376 | 5860 | 0.0031 | - | |
|
| 0.9392 | 5870 | 0.0 | - | |
|
| 0.9408 | 5880 | 0.0 | - | |
|
| 0.9424 | 5890 | 0.0 | - | |
|
| 0.944 | 5900 | 0.0031 | - | |
|
| 0.9456 | 5910 | 0.0 | - | |
|
| 0.9472 | 5920 | 0.0 | - | |
|
| 0.9488 | 5930 | 0.0 | - | |
|
| 0.9504 | 5940 | 0.0 | - | |
|
| 0.952 | 5950 | 0.0 | - | |
|
| 0.9536 | 5960 | 0.0001 | - | |
|
| 0.9552 | 5970 | 0.0 | - | |
|
| 0.9568 | 5980 | 0.0 | - | |
|
| 0.9584 | 5990 | 0.0031 | - | |
|
| 0.96 | 6000 | 0.0001 | - | |
|
| 0.9616 | 6010 | 0.0 | - | |
|
| 0.9632 | 6020 | 0.0 | - | |
|
| 0.9648 | 6030 | 0.0 | - | |
|
| 0.9664 | 6040 | 0.0 | - | |
|
| 0.968 | 6050 | 0.0 | - | |
|
| 0.9696 | 6060 | 0.0 | - | |
|
| 0.9712 | 6070 | 0.0 | - | |
|
| 0.9728 | 6080 | 0.0027 | - | |
|
| 0.9744 | 6090 | 0.0 | - | |
|
| 0.976 | 6100 | 0.0031 | - | |
|
| 0.9776 | 6110 | 0.003 | - | |
|
| 0.9792 | 6120 | 0.0 | - | |
|
| 0.9808 | 6130 | 0.0 | - | |
|
| 0.9824 | 6140 | 0.0 | - | |
|
| 0.984 | 6150 | 0.0 | - | |
|
| 0.9856 | 6160 | 0.0 | - | |
|
| 0.9872 | 6170 | 0.0 | - | |
|
| 0.9888 | 6180 | 0.0028 | - | |
|
| 0.9904 | 6190 | 0.0 | - | |
|
| 0.992 | 6200 | 0.0 | - | |
|
| 0.9936 | 6210 | 0.0 | - | |
|
| 0.9952 | 6220 | 0.0 | - | |
|
| 0.9968 | 6230 | 0.0 | - | |
|
| 0.9984 | 6240 | 0.0 | - | |
|
| 1.0 | 6250 | 0.0 | 0.0479 | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.2.0 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.4.1+cu121 |
|
- Datasets: 3.0.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |