rlanday commited on
Commit
d27b2b4
1 Parent(s): d24a0b0

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -6.00 +/- 1.65
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -3.32 +/- 0.61
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d05ef382db401659b272038a8731e16ec2eebce870b56744beb56d059ae873ec
3
- size 102613
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e124f063aa5c434269188544a253f4e4ad09a4a948d14ead76655a9f9b8a779d
3
+ size 108064
a2c-PandaReachDense-v2/data CHANGED
@@ -19,12 +19,12 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "num_timesteps": 0,
23
- "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1685979744464998627,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
@@ -33,10 +33,10 @@
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3ZujP9iXrr4nJpO/6lLVPUU3ob/OIce/curJPo8QgT8VTBq/0u/cPl3bF78n+gI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]]",
38
- "desired_goal": "[[ 1.2781941 -0.34100223 -1.1496018 ]\n [ 0.10416205 -1.2594992 -1.5557191 ]\n [ 0.3943668 1.0083178 -0.6027234 ]\n [ 0.43151718 -0.59319097 0.5116295 ]]",
39
- "observation": "[[ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
@@ -44,9 +44,9 @@
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlwu6vaVzDj6LrgA+vjFhvPwVGb78AR0+fEgJvmDi9z0zPMk97MUIPquxS7oMaFc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[-0.09084242 0.13911302 0.12566583]\n [-0.01374477 -0.14949793 0.15332788]\n [-0.13406557 0.12103724 0.09825935]\n [ 0.13356751 -0.00077703 0.21035784]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
@@ -56,13 +56,13 @@
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
- "_n_updates": 50000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
 
19
  "weight_decay": 0
20
  }
21
  },
22
+ "num_timesteps": 2000000,
23
+ "_total_timesteps": 2000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1685979826602814370,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
 
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnyDgPtv5vTypXA8/nyDgPtv5vTypXA8/nyDgPtv5vTypXA8/nyDgPtv5vTypXA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaFycP8mQsT7oDJe/9Mp5v0avMr+ZsDA9FiWpv6VPID+/tu0+yd+kP/Locz6hbI0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACfIOA+2/m9PKlcDz//L0w8XeGUurY1njyfIOA+2/m9PKlcDz//L0w8XeGUurY1njyfIOA+2/m9PKlcDz//L0w8XeGUurY1njyfIOA+2/m9PKlcDz//L0w8XeGUurY1njyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.43774888 0.02319043 0.56000763]\n [0.43774888 0.02319043 0.56000763]\n [0.43774888 0.02319043 0.56000763]\n [0.43774888 0.02319043 0.56000763]]",
38
+ "desired_goal": "[[ 1.22157 0.34680775 -1.1800814 ]\n [-0.97575307 -0.69798696 0.04313717]\n [-1.3214443 0.6262153 0.46428487]\n [ 1.2880794 0.2381933 0.2762194 ]]",
39
+ "observation": "[[ 0.43774888 0.02319043 0.56000763 0.01246262 -0.00113587 0.01931272]\n [ 0.43774888 0.02319043 0.56000763 0.01246262 -0.00113587 0.01931272]\n [ 0.43774888 0.02319043 0.56000763 0.01246262 -0.00113587 0.01931272]\n [ 0.43774888 0.02319043 0.56000763 0.01246262 -0.00113587 0.01931272]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA30H4PXTE5b310kQ+i1IKvm3egD2VRoo+EAMMPYgMS7zwxUY9uxuwPH/EB76mlp09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.12121939 -0.11219111 0.19221099]\n [-0.1350805 0.06292424 0.27006975]\n [ 0.03418261 -0.01239312 0.04852861]\n [ 0.0214976 -0.13258551 0.0769475 ]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
 
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeZEJ+DXyB8CUhpRSlIwBbJRLMowBdJRHQLRDQAR02cd1fZQoaAZoCWgPQwjDRIMUPMUHwJSGlFKUaBVLMmgWR0C0QyCup0fYdX2UKGgGaAloD0MIq3r5nSYzBcCUhpRSlGgVSzJoFkdAtEMA8nuy/3V9lChoBmgJaA9DCIDwoURLbhDAlIaUUpRoFUsyaBZHQLRC4Gus90R1fZQoaAZoCWgPQwiHqMKf4S0OwJSGlFKUaBVLMmgWR0C0Q7TFERapdX2UKGgGaAloD0MIZ55cUyCTDMCUhpRSlGgVSzJoFkdAtEOVd7fHgnV9lChoBmgJaA9DCLLa/L/qOBTAlIaUUpRoFUsyaBZHQLRDdaHsTnJ1fZQoaAZoCWgPQwgzi1BsBa0EwJSGlFKUaBVLMmgWR0C0Q1UaESM+dX2UKGgGaAloD0MIUp0OZD01A8CUhpRSlGgVSzJoFkdAtEQv19ORDHV9lChoBmgJaA9DCBCwVu2aMA7AlIaUUpRoFUsyaBZHQLREEIhQm/p1fZQoaAZoCWgPQwgDRMGMKfgNwJSGlFKUaBVLMmgWR0C0Q/D2nKnvdX2UKGgGaAloD0MIowbTMHzECsCUhpRSlGgVSzJoFkdAtEPQZGax5nV9lChoBmgJaA9DCO8eoPtyhgfAlIaUUpRoFUsyaBZHQLREqWGRFJB1fZQoaAZoCWgPQwjSGK2jqukOwJSGlFKUaBVLMmgWR0C0RIoYekpJdX2UKGgGaAloD0MI51QyAFQxC8CUhpRSlGgVSzJoFkdAtERqfjCHh3V9lChoBmgJaA9DCMueBDbnEBDAlIaUUpRoFUsyaBZHQLREShmoR7J1fZQoaAZoCWgPQwhkP4ulSL4SwJSGlFKUaBVLMmgWR0C0RSIlD4QCdX2UKGgGaAloD0MIcasgBrpGFMCUhpRSlGgVSzJoFkdAtEUC0IC2dHV9lChoBmgJaA9DCOAsJctJeBHAlIaUUpRoFUsyaBZHQLRE4va11GN1fZQoaAZoCWgPQwiKrDWU2osIwJSGlFKUaBVLMmgWR0C0RMJr56+ndX2UKGgGaAloD0MIUYTU7exLB8CUhpRSlGgVSzJoFkdAtEWcN8VpK3V9lChoBmgJaA9DCMlYbf5flQXAlIaUUpRoFUsyaBZHQLRFfOQQtjF1fZQoaAZoCWgPQwj203/W/FgJwJSGlFKUaBVLMmgWR0C0RV0IomXxdX2UKGgGaAloD0MIbef7qfGiEcCUhpRSlGgVSzJoFkdAtEU8h4dIXnV9lChoBmgJaA9DCL8oQX+hBwzAlIaUUpRoFUsyaBZHQLRGFT3Zf2N1fZQoaAZoCWgPQwjQ1VbsL0sbwJSGlFKUaBVLMmgWR0C0RfXskY4ydX2UKGgGaAloD0MIZY7lXfUgC8CUhpRSlGgVSzJoFkdAtEXWFh5PdnV9lChoBmgJaA9DCLTk8bT8YBTAlIaUUpRoFUsyaBZHQLRFtZE2Hcl1fZQoaAZoCWgPQwjd66S+LA0KwJSGlFKUaBVLMmgWR0C0Ro9ZzPrwdX2UKGgGaAloD0MIyNPyA1c5EsCUhpRSlGgVSzJoFkdAtEZwCq6vq3V9lChoBmgJaA9DCO317o/3ygbAlIaUUpRoFUsyaBZHQLRGUDn/1g91fZQoaAZoCWgPQwi6TbhX5u0LwJSGlFKUaBVLMmgWR0C0Ri+v2Xb/dX2UKGgGaAloD0MIuRtEa0WLEcCUhpRSlGgVSzJoFkdAtEcJWluWKXV9lChoBmgJaA9DCGYUyy2tBgjAlIaUUpRoFUsyaBZHQLRG6gntv4x1fZQoaAZoCWgPQwgqx2Rx/7ETwJSGlFKUaBVLMmgWR0C0RspoTPB0dX2UKGgGaAloD0MIJR+7C5Q0CcCUhpRSlGgVSzJoFkdAtEap4KQaJnV9lChoBmgJaA9DCKUWSianFgfAlIaUUpRoFUsyaBZHQLRHgDGLk0d1fZQoaAZoCWgPQwiYM9sV+sACwJSGlFKUaBVLMmgWR0C0R2DW07bMdX2UKGgGaAloD0MICHb8FwhSEcCUhpRSlGgVSzJoFkdAtEdBAood/HV9lChoBmgJaA9DCMhBCTNt/wPAlIaUUpRoFUsyaBZHQLRHIHtWuHN1fZQoaAZoCWgPQwigqGxYU5kKwJSGlFKUaBVLMmgWR0C0R/nZGrjpdX2UKGgGaAloD0MItJJWfEPBCMCUhpRSlGgVSzJoFkdAtEfaqlxffHV9lChoBmgJaA9DCCpY42w6ghHAlIaUUpRoFUsyaBZHQLRHutZFG5N1fZQoaAZoCWgPQwilvFZCd4kIwJSGlFKUaBVLMmgWR0C0R5pKSPludX2UKGgGaAloD0MIYd9OIsIfEcCUhpRSlGgVSzJoFkdAtEhv1Iy0r3V9lChoBmgJaA9DCB10CYfeQgXAlIaUUpRoFUsyaBZHQLRIUI6r/851fZQoaAZoCWgPQwhsPxnjwwwKwJSGlFKUaBVLMmgWR0C0SDC9M9KVdX2UKGgGaAloD0MISg1tADbADMCUhpRSlGgVSzJoFkdAtEgQKneiz3V9lChoBmgJaA9DCOChKNAnAhLAlIaUUpRoFUsyaBZHQLRI5LcsUZh1fZQoaAZoCWgPQwhihsYTQXwQwJSGlFKUaBVLMmgWR0C0SMVkH2RJdX2UKGgGaAloD0MI3T8WokOQEsCUhpRSlGgVSzJoFkdAtEilhmXgL3V9lChoBmgJaA9DCK5ITFDDNwnAlIaUUpRoFUsyaBZHQLRIhPY4ACJ1fZQoaAZoCWgPQwhCQL6ECq4SwJSGlFKUaBVLMmgWR0C0SVzmCAc1dX2UKGgGaAloD0MIt2PqruxCCcCUhpRSlGgVSzJoFkdAtEk9jLB9C3V9lChoBmgJaA9DCH9pUZ/kDgzAlIaUUpRoFUsyaBZHQLRJHbIcR151fZQoaAZoCWgPQwgKaCJseFoDwJSGlFKUaBVLMmgWR0C0SP0tqYZ3dX2UKGgGaAloD0MIEkw1s5aCEMCUhpRSlGgVSzJoFkdAtEnT5HmRvHV9lChoBmgJaA9DCHwOLEfIYAPAlIaUUpRoFUsyaBZHQLRJtJP69Ch1fZQoaAZoCWgPQwjwTdNnB3wRwJSGlFKUaBVLMmgWR0C0SZS/KyOadX2UKGgGaAloD0MI8GskCcIVBcCUhpRSlGgVSzJoFkdAtEl0LRa5gHV9lChoBmgJaA9DCCzxgLIp9wLAlIaUUpRoFUsyaBZHQLRKS5M10kp1fZQoaAZoCWgPQwjScqCH2hYKwJSGlFKUaBVLMmgWR0C0SixBRhttdX2UKGgGaAloD0MIMbPPY5RHAsCUhpRSlGgVSzJoFkdAtEoMahpQDXV9lChoBmgJaA9DCDAqqRPQxATAlIaUUpRoFUsyaBZHQLRJ6+eOGTN1fZQoaAZoCWgPQwgRbjKqDKMLwJSGlFKUaBVLMmgWR0C0SsLgKnejdX2UKGgGaAloD0MI+RBUjV7tAMCUhpRSlGgVSzJoFkdAtEqjiqABk3V9lChoBmgJaA9DCI+NQLyu/wfAlIaUUpRoFUsyaBZHQLRKg7F85S51fZQoaAZoCWgPQwg1CHO7l1sRwJSGlFKUaBVLMmgWR0C0SmMmrsBydX2UKGgGaAloD0MIehfvx+23BcCUhpRSlGgVSzJoFkdAtEs4Co0hvHV9lChoBmgJaA9DCNFa0eY4FwzAlIaUUpRoFUsyaBZHQLRLGLgXMyJ1fZQoaAZoCWgPQwjC+dSxSnkQwJSGlFKUaBVLMmgWR0C0Svjghr31dX2UKGgGaAloD0MIvajdrwL8DMCUhpRSlGgVSzJoFkdAtErYW2w3YXV9lChoBmgJaA9DCMu76gHzEAjAlIaUUpRoFUsyaBZHQLRLricXm/51fZQoaAZoCWgPQwgZ/tMNFNgIwJSGlFKUaBVLMmgWR0C0S47Wd3B6dX2UKGgGaAloD0MIeSRens5VC8CUhpRSlGgVSzJoFkdAtEtvBguyvHV9lChoBmgJaA9DCEC/79+8iBHAlIaUUpRoFUsyaBZHQLRLToUSIxh1fZQoaAZoCWgPQwipiT4fZeQGwJSGlFKUaBVLMmgWR0C0TCPLgXMydX2UKGgGaAloD0MIPStpxTf0CcCUhpRSlGgVSzJoFkdAtEwEeXAuZnV9lChoBmgJaA9DCMLc7uU+GQ3AlIaUUpRoFUsyaBZHQLRL5JuVHFx1fZQoaAZoCWgPQwiP/MHAc68NwJSGlFKUaBVLMmgWR0C0S8QR02cbdX2UKGgGaAloD0MIiPVGrTA9CcCUhpRSlGgVSzJoFkdAtEyaTTvy9XV9lChoBmgJaA9DCPt3feasTwnAlIaUUpRoFUsyaBZHQLRMev4/NaB1fZQoaAZoCWgPQwiFzJVBtcEOwJSGlFKUaBVLMmgWR0C0TFshHLA6dX2UKGgGaAloD0MIcT0K16NQBMCUhpRSlGgVSzJoFkdAtEw6k690zXV9lChoBmgJaA9DCD/iV6zhEhHAlIaUUpRoFUsyaBZHQLRNEjWCmMx1fZQoaAZoCWgPQwj6YYTwaMMHwJSGlFKUaBVLMmgWR0C0TPLcXWOIdX2UKGgGaAloD0MI0UGXcOidEMCUhpRSlGgVSzJoFkdAtEzTHYHxBnV9lChoBmgJaA9DCAUzpmCNExHAlIaUUpRoFUsyaBZHQLRMspt78el1fZQoaAZoCWgPQwgXZMvyddkMwJSGlFKUaBVLMmgWR0C0TYbgXMyKdX2UKGgGaAloD0MIp88OuK44DMCUhpRSlGgVSzJoFkdAtE1nkzXSSnV9lChoBmgJaA9DCPGAsilXuA3AlIaUUpRoFUsyaBZHQLRNR7pmmLt1fZQoaAZoCWgPQwjfo/56haUFwJSGlFKUaBVLMmgWR0C0TScxGlQ/dX2UKGgGaAloD0MI1J6Sc2KvBcCUhpRSlGgVSzJoFkdAtE39q7Ack3V9lChoBmgJaA9DCMYwJ2iTIwTAlIaUUpRoFUsyaBZHQLRN3qgAZKp1fZQoaAZoCWgPQwi9/48TJmwVwJSGlFKUaBVLMmgWR0C0Tb7TH80ldX2UKGgGaAloD0MIUHPyIhMQEcCUhpRSlGgVSzJoFkdAtE2eUGFBY3V9lChoBmgJaA9DCLH9ZIwP0w7AlIaUUpRoFUsyaBZHQLROdW912aF1fZQoaAZoCWgPQwj5254gsV0IwJSGlFKUaBVLMmgWR0C0TlYjB2wFdX2UKGgGaAloD0MIIVnABG49DcCUhpRSlGgVSzJoFkdAtE42T9sJpnV9lChoBmgJaA9DCIauRKD6BwrAlIaUUpRoFUsyaBZHQLROFcdo3711ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
  },
65
+ "_n_updates": 100000,
66
  "n_steps": 5,
67
  "gamma": 0.99,
68
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:be1ee43b06f0c62a321f83f6a117845cb75200c275debd8b831497624e6008fc
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4a411382e33103169a9aa3f799e7cf245dc61a8c139fbbc2c6e0c0400edd97f
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:016179aef026214683305f3a4376480431b373f08f06a1e944b68969ba451967
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf857ebbb49c5923ff8d0e1a744d432d0efcb74afd81071c841e6eaebed61c52
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0f2dfa3b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0f2dfa8800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 0, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685979744464998627, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3ZujP9iXrr4nJpO/6lLVPUU3ob/OIce/curJPo8QgT8VTBq/0u/cPl3bF78n+gI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]]", "desired_goal": "[[ 1.2781941 -0.34100223 -1.1496018 ]\n [ 0.10416205 -1.2594992 -1.5557191 ]\n [ 0.3943668 1.0083178 -0.6027234 ]\n [ 0.43151718 -0.59319097 0.5116295 ]]", "observation": "[[ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlwu6vaVzDj6LrgA+vjFhvPwVGb78AR0+fEgJvmDi9z0zPMk97MUIPquxS7oMaFc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09084242 0.13911302 0.12566583]\n [-0.01374477 -0.14949793 0.15332788]\n [-0.13406557 0.12103724 0.09825935]\n [ 0.13356751 -0.00077703 0.21035784]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0f2dfa3b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0f2dfa8800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685979826602814370, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnyDgPtv5vTypXA8/nyDgPtv5vTypXA8/nyDgPtv5vTypXA8/nyDgPtv5vTypXA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaFycP8mQsT7oDJe/9Mp5v0avMr+ZsDA9FiWpv6VPID+/tu0+yd+kP/Locz6hbI0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACfIOA+2/m9PKlcDz//L0w8XeGUurY1njyfIOA+2/m9PKlcDz//L0w8XeGUurY1njyfIOA+2/m9PKlcDz//L0w8XeGUurY1njyfIOA+2/m9PKlcDz//L0w8XeGUurY1njyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43774888 0.02319043 0.56000763]\n [0.43774888 0.02319043 0.56000763]\n [0.43774888 0.02319043 0.56000763]\n [0.43774888 0.02319043 0.56000763]]", "desired_goal": "[[ 1.22157 0.34680775 -1.1800814 ]\n [-0.97575307 -0.69798696 0.04313717]\n [-1.3214443 0.6262153 0.46428487]\n [ 1.2880794 0.2381933 0.2762194 ]]", "observation": "[[ 0.43774888 0.02319043 0.56000763 0.01246262 -0.00113587 0.01931272]\n [ 0.43774888 0.02319043 0.56000763 0.01246262 -0.00113587 0.01931272]\n [ 0.43774888 0.02319043 0.56000763 0.01246262 -0.00113587 0.01931272]\n [ 0.43774888 0.02319043 0.56000763 0.01246262 -0.00113587 0.01931272]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA30H4PXTE5b310kQ+i1IKvm3egD2VRoo+EAMMPYgMS7zwxUY9uxuwPH/EB76mlp09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12121939 -0.11219111 0.19221099]\n [-0.1350805 0.06292424 0.27006975]\n [ 0.03418261 -0.01239312 0.04852861]\n [ 0.0214976 -0.13258551 0.0769475 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeZEJ+DXyB8CUhpRSlIwBbJRLMowBdJRHQLRDQAR02cd1fZQoaAZoCWgPQwjDRIMUPMUHwJSGlFKUaBVLMmgWR0C0QyCup0fYdX2UKGgGaAloD0MIq3r5nSYzBcCUhpRSlGgVSzJoFkdAtEMA8nuy/3V9lChoBmgJaA9DCIDwoURLbhDAlIaUUpRoFUsyaBZHQLRC4Gus90R1fZQoaAZoCWgPQwiHqMKf4S0OwJSGlFKUaBVLMmgWR0C0Q7TFERapdX2UKGgGaAloD0MIZ55cUyCTDMCUhpRSlGgVSzJoFkdAtEOVd7fHgnV9lChoBmgJaA9DCLLa/L/qOBTAlIaUUpRoFUsyaBZHQLRDdaHsTnJ1fZQoaAZoCWgPQwgzi1BsBa0EwJSGlFKUaBVLMmgWR0C0Q1UaESM+dX2UKGgGaAloD0MIUp0OZD01A8CUhpRSlGgVSzJoFkdAtEQv19ORDHV9lChoBmgJaA9DCBCwVu2aMA7AlIaUUpRoFUsyaBZHQLREEIhQm/p1fZQoaAZoCWgPQwgDRMGMKfgNwJSGlFKUaBVLMmgWR0C0Q/D2nKnvdX2UKGgGaAloD0MIowbTMHzECsCUhpRSlGgVSzJoFkdAtEPQZGax5nV9lChoBmgJaA9DCO8eoPtyhgfAlIaUUpRoFUsyaBZHQLREqWGRFJB1fZQoaAZoCWgPQwjSGK2jqukOwJSGlFKUaBVLMmgWR0C0RIoYekpJdX2UKGgGaAloD0MI51QyAFQxC8CUhpRSlGgVSzJoFkdAtERqfjCHh3V9lChoBmgJaA9DCMueBDbnEBDAlIaUUpRoFUsyaBZHQLREShmoR7J1fZQoaAZoCWgPQwhkP4ulSL4SwJSGlFKUaBVLMmgWR0C0RSIlD4QCdX2UKGgGaAloD0MIcasgBrpGFMCUhpRSlGgVSzJoFkdAtEUC0IC2dHV9lChoBmgJaA9DCOAsJctJeBHAlIaUUpRoFUsyaBZHQLRE4va11GN1fZQoaAZoCWgPQwiKrDWU2osIwJSGlFKUaBVLMmgWR0C0RMJr56+ndX2UKGgGaAloD0MIUYTU7exLB8CUhpRSlGgVSzJoFkdAtEWcN8VpK3V9lChoBmgJaA9DCMlYbf5flQXAlIaUUpRoFUsyaBZHQLRFfOQQtjF1fZQoaAZoCWgPQwj203/W/FgJwJSGlFKUaBVLMmgWR0C0RV0IomXxdX2UKGgGaAloD0MIbef7qfGiEcCUhpRSlGgVSzJoFkdAtEU8h4dIXnV9lChoBmgJaA9DCL8oQX+hBwzAlIaUUpRoFUsyaBZHQLRGFT3Zf2N1fZQoaAZoCWgPQwjQ1VbsL0sbwJSGlFKUaBVLMmgWR0C0RfXskY4ydX2UKGgGaAloD0MIZY7lXfUgC8CUhpRSlGgVSzJoFkdAtEXWFh5PdnV9lChoBmgJaA9DCLTk8bT8YBTAlIaUUpRoFUsyaBZHQLRFtZE2Hcl1fZQoaAZoCWgPQwjd66S+LA0KwJSGlFKUaBVLMmgWR0C0Ro9ZzPrwdX2UKGgGaAloD0MIyNPyA1c5EsCUhpRSlGgVSzJoFkdAtEZwCq6vq3V9lChoBmgJaA9DCO317o/3ygbAlIaUUpRoFUsyaBZHQLRGUDn/1g91fZQoaAZoCWgPQwi6TbhX5u0LwJSGlFKUaBVLMmgWR0C0Ri+v2Xb/dX2UKGgGaAloD0MIuRtEa0WLEcCUhpRSlGgVSzJoFkdAtEcJWluWKXV9lChoBmgJaA9DCGYUyy2tBgjAlIaUUpRoFUsyaBZHQLRG6gntv4x1fZQoaAZoCWgPQwgqx2Rx/7ETwJSGlFKUaBVLMmgWR0C0RspoTPB0dX2UKGgGaAloD0MIJR+7C5Q0CcCUhpRSlGgVSzJoFkdAtEap4KQaJnV9lChoBmgJaA9DCKUWSianFgfAlIaUUpRoFUsyaBZHQLRHgDGLk0d1fZQoaAZoCWgPQwiYM9sV+sACwJSGlFKUaBVLMmgWR0C0R2DW07bMdX2UKGgGaAloD0MICHb8FwhSEcCUhpRSlGgVSzJoFkdAtEdBAood/HV9lChoBmgJaA9DCMhBCTNt/wPAlIaUUpRoFUsyaBZHQLRHIHtWuHN1fZQoaAZoCWgPQwigqGxYU5kKwJSGlFKUaBVLMmgWR0C0R/nZGrjpdX2UKGgGaAloD0MItJJWfEPBCMCUhpRSlGgVSzJoFkdAtEfaqlxffHV9lChoBmgJaA9DCCpY42w6ghHAlIaUUpRoFUsyaBZHQLRHutZFG5N1fZQoaAZoCWgPQwilvFZCd4kIwJSGlFKUaBVLMmgWR0C0R5pKSPludX2UKGgGaAloD0MIYd9OIsIfEcCUhpRSlGgVSzJoFkdAtEhv1Iy0r3V9lChoBmgJaA9DCB10CYfeQgXAlIaUUpRoFUsyaBZHQLRIUI6r/851fZQoaAZoCWgPQwhsPxnjwwwKwJSGlFKUaBVLMmgWR0C0SDC9M9KVdX2UKGgGaAloD0MISg1tADbADMCUhpRSlGgVSzJoFkdAtEgQKneiz3V9lChoBmgJaA9DCOChKNAnAhLAlIaUUpRoFUsyaBZHQLRI5LcsUZh1fZQoaAZoCWgPQwhihsYTQXwQwJSGlFKUaBVLMmgWR0C0SMVkH2RJdX2UKGgGaAloD0MI3T8WokOQEsCUhpRSlGgVSzJoFkdAtEilhmXgL3V9lChoBmgJaA9DCK5ITFDDNwnAlIaUUpRoFUsyaBZHQLRIhPY4ACJ1fZQoaAZoCWgPQwhCQL6ECq4SwJSGlFKUaBVLMmgWR0C0SVzmCAc1dX2UKGgGaAloD0MIt2PqruxCCcCUhpRSlGgVSzJoFkdAtEk9jLB9C3V9lChoBmgJaA9DCH9pUZ/kDgzAlIaUUpRoFUsyaBZHQLRJHbIcR151fZQoaAZoCWgPQwgKaCJseFoDwJSGlFKUaBVLMmgWR0C0SP0tqYZ3dX2UKGgGaAloD0MIEkw1s5aCEMCUhpRSlGgVSzJoFkdAtEnT5HmRvHV9lChoBmgJaA9DCHwOLEfIYAPAlIaUUpRoFUsyaBZHQLRJtJP69Ch1fZQoaAZoCWgPQwjwTdNnB3wRwJSGlFKUaBVLMmgWR0C0SZS/KyOadX2UKGgGaAloD0MI8GskCcIVBcCUhpRSlGgVSzJoFkdAtEl0LRa5gHV9lChoBmgJaA9DCCzxgLIp9wLAlIaUUpRoFUsyaBZHQLRKS5M10kp1fZQoaAZoCWgPQwjScqCH2hYKwJSGlFKUaBVLMmgWR0C0SixBRhttdX2UKGgGaAloD0MIMbPPY5RHAsCUhpRSlGgVSzJoFkdAtEoMahpQDXV9lChoBmgJaA9DCDAqqRPQxATAlIaUUpRoFUsyaBZHQLRJ6+eOGTN1fZQoaAZoCWgPQwgRbjKqDKMLwJSGlFKUaBVLMmgWR0C0SsLgKnejdX2UKGgGaAloD0MI+RBUjV7tAMCUhpRSlGgVSzJoFkdAtEqjiqABk3V9lChoBmgJaA9DCI+NQLyu/wfAlIaUUpRoFUsyaBZHQLRKg7F85S51fZQoaAZoCWgPQwg1CHO7l1sRwJSGlFKUaBVLMmgWR0C0SmMmrsBydX2UKGgGaAloD0MIehfvx+23BcCUhpRSlGgVSzJoFkdAtEs4Co0hvHV9lChoBmgJaA9DCNFa0eY4FwzAlIaUUpRoFUsyaBZHQLRLGLgXMyJ1fZQoaAZoCWgPQwjC+dSxSnkQwJSGlFKUaBVLMmgWR0C0Svjghr31dX2UKGgGaAloD0MIvajdrwL8DMCUhpRSlGgVSzJoFkdAtErYW2w3YXV9lChoBmgJaA9DCMu76gHzEAjAlIaUUpRoFUsyaBZHQLRLricXm/51fZQoaAZoCWgPQwgZ/tMNFNgIwJSGlFKUaBVLMmgWR0C0S47Wd3B6dX2UKGgGaAloD0MIeSRens5VC8CUhpRSlGgVSzJoFkdAtEtvBguyvHV9lChoBmgJaA9DCEC/79+8iBHAlIaUUpRoFUsyaBZHQLRLToUSIxh1fZQoaAZoCWgPQwipiT4fZeQGwJSGlFKUaBVLMmgWR0C0TCPLgXMydX2UKGgGaAloD0MIPStpxTf0CcCUhpRSlGgVSzJoFkdAtEwEeXAuZnV9lChoBmgJaA9DCMLc7uU+GQ3AlIaUUpRoFUsyaBZHQLRL5JuVHFx1fZQoaAZoCWgPQwiP/MHAc68NwJSGlFKUaBVLMmgWR0C0S8QR02cbdX2UKGgGaAloD0MIiPVGrTA9CcCUhpRSlGgVSzJoFkdAtEyaTTvy9XV9lChoBmgJaA9DCPt3feasTwnAlIaUUpRoFUsyaBZHQLRMev4/NaB1fZQoaAZoCWgPQwiFzJVBtcEOwJSGlFKUaBVLMmgWR0C0TFshHLA6dX2UKGgGaAloD0MIcT0K16NQBMCUhpRSlGgVSzJoFkdAtEw6k690zXV9lChoBmgJaA9DCD/iV6zhEhHAlIaUUpRoFUsyaBZHQLRNEjWCmMx1fZQoaAZoCWgPQwj6YYTwaMMHwJSGlFKUaBVLMmgWR0C0TPLcXWOIdX2UKGgGaAloD0MI0UGXcOidEMCUhpRSlGgVSzJoFkdAtEzTHYHxBnV9lChoBmgJaA9DCAUzpmCNExHAlIaUUpRoFUsyaBZHQLRMspt78el1fZQoaAZoCWgPQwgXZMvyddkMwJSGlFKUaBVLMmgWR0C0TYbgXMyKdX2UKGgGaAloD0MIp88OuK44DMCUhpRSlGgVSzJoFkdAtE1nkzXSSnV9lChoBmgJaA9DCPGAsilXuA3AlIaUUpRoFUsyaBZHQLRNR7pmmLt1fZQoaAZoCWgPQwjfo/56haUFwJSGlFKUaBVLMmgWR0C0TScxGlQ/dX2UKGgGaAloD0MI1J6Sc2KvBcCUhpRSlGgVSzJoFkdAtE39q7Ack3V9lChoBmgJaA9DCMYwJ2iTIwTAlIaUUpRoFUsyaBZHQLRN3qgAZKp1fZQoaAZoCWgPQwi9/48TJmwVwJSGlFKUaBVLMmgWR0C0Tb7TH80ldX2UKGgGaAloD0MIUHPyIhMQEcCUhpRSlGgVSzJoFkdAtE2eUGFBY3V9lChoBmgJaA9DCLH9ZIwP0w7AlIaUUpRoFUsyaBZHQLROdW912aF1fZQoaAZoCWgPQwj5254gsV0IwJSGlFKUaBVLMmgWR0C0TlYjB2wFdX2UKGgGaAloD0MIIVnABG49DcCUhpRSlGgVSzJoFkdAtE42T9sJpnV9lChoBmgJaA9DCIauRKD6BwrAlIaUUpRoFUsyaBZHQLROFcdo3711ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -6.000519580207765, "std_reward": 1.6451644677941502, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-05T15:42:47.083936"}
 
1
+ {"mean_reward": -3.316527401190251, "std_reward": 0.6145163617609906, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-05T17:15:38.142296"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b1a56f4041003a7554805d18ad36afceb70df3ac48c22c4db9d61e02ead61aab
3
- size 2374
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83b1a34d32eba5ab0cb3b18d4cbce9369c1b7e4d32398616502c564daac5698d
3
+ size 2387