{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3f6a8af550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3f6a8af5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3f6a8af670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3f6a8af700>", "_build": "<function ActorCriticPolicy._build at 0x7f3f6a8af790>", "forward": "<function ActorCriticPolicy.forward at 0x7f3f6a8af820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3f6a8af8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3f6a8af940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3f6a8af9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3f6a8afa60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3f6a8afaf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3f6a8afb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3f6a8aaae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEschZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLHIWUjAFDlHSUUpSMBGhpZ2iUaBIolnAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCkschZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolhwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkschZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolhwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUschZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAQEBAQEBAQGUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684422162976219236, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVgAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFAvaG9tZS9ydWJlbi8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB1H4b743rc+F0adPqKexT9mNOs+RH45PtzgGr73fDg/ekiFv3pHIT81N3+/aiicPwvfuL2hALE/yZluvvaRVL5+qOO95z86Phkqnr7VCnA/P84VvgPK3D15LiK/6yk1v2rkZb9FEUE/S8+LPg+YET8ZVHRAqqmjvwZ1cz9uM5K/HruUvyptRT2c0Fe/rT5XPiE+/z6sXPg7SBhDwAIdlbwi0IU+5fgYOzi+J0AIkYA85S6kP5IKEzzySg5Akn7HPMw0KD6omUe6a8wewLk+urxq5GW/GrmpvylgasByEOG/GVR0QD2po78GdXM/bjOSvx67lL8qbUU9nNBXv60+Vz7KKr0+rFz4O1CDSsACHZW8BAa8PuX4GDsAhB1ACJGAPGnsqz+SChM8HwgSQJJ+xzwzx848qJlHulriGsC5Prq8auRlvxq5qb8pYGrAchDhvxlUdECFqKO/BnVzP24zkr8eu5S/Km1FPZzQV7+tPlc+9eN5Pqxc+DscFyTAAh2VvKy1Ij/l+Bg7KWsQQAiRgDxbf7w/kgoTPB3KJUCSfsc8V7dFvqiZR7q3gzfAuT66vGrkZb8auam/KWBqwHIQ4b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACZs421AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1/MhPAAAAABIEvy/AAAAAIgToj0AAAAALvbwPwAAAAAKtp28AAAAANqr9z8AAAAAhs2+PQAAAAA4FNm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2Fs5NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLiU47sAAAAAvmjuvwAAAAAEHAs+AAAAAEdn5z8AAAAAsZn2vQAAAABdOvQ/AAAAAIwdzL0AAAAAFZvevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBb3LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBznH29AAAAABlU4b8AAAAAd5ygPAAAAACMkPs/AAAAAG3x7L0AAAAAvMfZPwAAAACG8f48AAAAACqEAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYfZE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWszXvAAAAAAKD+y/AAAAAFX5XL0AAAAAOHv5PwAAAABethK9AAAAAMiPAEAAAAAAo2frvQAAAACu+uy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI4ZzGLk0aaMAWyUTegDjAF0lEdAm0czpPhybXV9lChoBkdAkRSbyYoiLWgHTegDaAhHQJtPCLEUCaJ1fZQoaAZHQI25SoXKr7xoB03oA2gIR0CbTwj4pMHsdX2UKGgGR0CRCVmZVn27aAdN6ANoCEdAm08JT2nKn3V9lChoBkdAjP7TqB3A22gHTegDaAhHQJtVsK3NLUV1fZQoaAZHQJJQPxPO6d1oB03oA2gIR0CbXaa0QbuMdX2UKGgGR0CMjlVAAyVOaAdN6ANoCEdAm12nJgb6xnV9lChoBkdAiTXyY5T6zmgHTegDaAhHQJtdp5iVjZt1fZQoaAZHQIvzu6Ae7tloB03oA2gIR0CbZJ6sySFHdX2UKGgGR0CS0AzIV/MGaAdN6ANoCEdAm2yCUxEfDHV9lChoBkdAjP3G0E5hjWgHTegDaAhHQJtsgpw0fo11fZQoaAZHQI3dpFiKBNFoB03oA2gIR0CbbIL1mJ3xdX2UKGgGR0CLmAOgg5imaAdN6ANoCEdAm3MgKrq+rXV9lChoBkdAk/ur/ffoBGgHTegDaAhHQJt64c6vJRx1fZQoaAZHQIp6hs67ulZoB03oA2gIR0CbeuInBtUGdX2UKGgGR0CR9K90zTF3aAdN6ANoCEdAm3rigPEsKHV9lChoBkdAiHMYAsCkoGgHTegDaAhHQJuBeFlCkXV1fZQoaAZHQJFoJng5zYFoB03oA2gIR0CbiW/s3Q2NdX2UKGgGR0CIOzqDbrTqaAdN6ANoCEdAm4lwRf4REnV9lChoBkdAhmFL92ovSWgHTegDaAhHQJuJcKjSG8F1fZQoaAZHQIM2DnxJ/XpoB03oA2gIR0CbkFM6ij+KdX2UKGgGR0CQfi1MdtEYaAdN6ANoCEdAm5hlDBuXNXV9lChoBkdAkSTJBkZrHmgHTegDaAhHQJuYZZDArQR1fZQoaAZHQI2tSTY/Vy5oB03oA2gIR0CbmGYp2ECedX2UKGgGR0CKyGtCiRGMaAdN6ANoCEdAm58Do+wC83V9lChoBkdAjizCWNWEK2gHTegDaAhHQJum86BAfMh1fZQoaAZHQJHkSOmzjWFoB03oA2gIR0CbpvP2PDHfdX2UKGgGR0CQ3CVpsXSCaAdN6ANoCEdAm6b0Uj9n9XV9lChoBkdAkDP4WtU4rGgHTegDaAhHQJutyBVdX1d1fZQoaAZHQI0YurZJ04loB03oA2gIR0CbtaHtWuHOdX2UKGgGR0CQB3Zl4C6paAdN6ANoCEdAm7WiQxN7B3V9lChoBkdAkzuJQYUFjmgHTegDaAhHQJu1oqJ/G2l1fZQoaAZHQIgM26shgVpoB03oA2gIR0CbvIPX05EMdX2UKGgGR0COpihQFcIJaAdN6ANoCEdAm8RtUGVzIXV9lChoBkdAkFH+bExZdWgHTegDaAhHQJvEbY+Sr5t1fZQoaAZHQIz0K704BFNoB03oA2gIR0CbxG3r2QGOdX2UKGgGR0CQR3vIOpbVaAdN6ANoCEdAm8sfwqiGnHV9lChoBkdAku84YWLxZ2gHTegDaAhHQJvTBxcVxjt1fZQoaAZHQI4idWMju8doB03oA2gIR0Cb0wdpItlJdX2UKGgGR0BzwttDUmUoaAdN6ANoCEdAm9MH1jAi3XV9lChoBkdAjOT5BcAzYWgHTegDaAhHQJvZvnIQvpR1fZQoaAZHQIX8a6Ymb9ZoB03oA2gIR0Cb4eOAy2x6dX2UKGgGR0CROjsJpnHvaAdN6ANoCEdAm+Hj0+TvA3V9lChoBkdAcXhIH1OCXmgHTegDaAhHQJvh5Drqt5l1fZQoaAZHQJB2/dweeWhoB03oA2gIR0Cb6KN/e+EidX2UKGgGR0CI4XUYsNDuaAdN6ANoCEdAm/BQC0WuYHV9lChoBkdAhPY4fW+XaGgHTegDaAhHQJvwUGPgeil1fZQoaAZHQJG9/Tx5LRNoB03oA2gIR0Cb8FDDTBqLdX2UKGgGR0CJuI2m51/2aAdN6ANoCEdAm/cLSiM5wXV9lChoBkdAkDDmMsH0LGgHTegDaAhHQJv+6cXm/351fZQoaAZHQJPeqKgqVhVoB03oA2gIR0Cb/uopx3mndX2UKGgGR0CRXcv5P/JeaAdN6ANoCEdAm/7qfvnbI3V9lChoBkdAkhQ3fyf+TGgHTegDaAhHQJwFWvECNjt1fZQoaAZHQJGrKFQEZBNoB03oA2gIR0CcDST987ZGdX2UKGgGR0CIkFHqeK8+aAdN6ANoCEdAnA0lVxS5y3V9lChoBkdAkWC6pPykK2gHTegDaAhHQJwNJbC79Q51fZQoaAZHQI/UIomXw9doB03oA2gIR0CcE/DZDiOvdX2UKGgGR0CSrBFEAo5QaAdN6ANoCEdAnBvR24d6s3V9lChoBkdAiR4rULDyfGgHTegDaAhHQJwb0i+tbLV1fZQoaAZHQJMd2IoE0SBoB03oA2gIR0CcG9KOktVadX2UKGgGR0CUUUBLPD51aAdN6ANoCEdAnCLJtSAH3XV9lChoBkdAi/aC6xxDLWgHTegDaAhHQJwquLqD9O11fZQoaAZHQJEBYFKTSstoB03oA2gIR0CcKrj+717IdX2UKGgGR0B7ALNY8uBdaAdN6ANoCEdAnCq5YxL0z3V9lChoBkdAkLr+IuXeFmgHTegDaAhHQJwxcBgeA/d1fZQoaAZHQJSQS3MINVloB03oA2gIR0CcOUTQVsUJdX2UKGgGR0CPkDWfbsWwaAdN6ANoCEdAnDlFIAfdRHV9lChoBkdAkUpTsD4gzWgHTegDaAhHQJw5RYHPeHl1fZQoaAZHQJDu3hfjS5RoB03oA2gIR0CcP85ylvZRdX2UKGgGR0CPilBDXvphaAdN6ANoCEdAnEdsh1Tzd3V9lChoBkdAklvDIzWPLmgHTegDaAhHQJxHbNVzZHx1fZQoaAZHQIj0Ah8pkPNoB03oA2gIR0CcR21PnB+GdX2UKGgGR0COWrwjMV1waAdN6ANoCEdAnE4HvDxb0XV9lChoBkdAkzCZD/lyR2gHTegDaAhHQJxVoraufVZ1fZQoaAZHQJKmNZha1TloB03oA2gIR0CcVaL5ylvZdX2UKGgGR0CQNHqj8DSxaAdN6ANoCEdAnFWjYZl4DHV9lChoBkdAj7eNmL9/BmgHTegDaAhHQJxcRw97ngZ1fZQoaAZHQI7/ffbblBBoB03oA2gIR0CcZANdJJ5FdX2UKGgGR0CPlloBaLXMaAdN6ANoCEdAnGQEM9bHInV9lChoBkdAkp62nGbTdGgHTegDaAhHQJxkBR51Ng11fZQoaAZHQJRVhw2l2vBoB03oA2gIR0CcaqifxtpFdX2UKGgGR0CRT9QAMlTnaAdN6ANoCEdAnHJYvvjOs3V9lChoBkdAj77fGlyimGgHTegDaAhHQJxyWQlruYx1fZQoaAZHQJQ1QPz4DcNoB03oA2gIR0CccllfZ26kdX2UKGgGR0CSKC7W/ag3aAdN6ANoCEdAnHjNC7btZ3V9lChoBkdAkzbgV0tAcGgHTegDaAhHQJyAgbBGhEl1fZQoaAZHQI4GrGBFuvVoB03oA2gIR0CcgIIuoP07dX2UKGgGR0CO0O9+PRzBaAdN6ANoCEdAnICCu+yquXV9lChoBkdAkodu0kWykmgHTegDaAhHQJyHMBzV+Zx1fZQoaAZHQI8yKGvfTCtoB03oA2gIR0CcjwtyPuG9dX2UKGgGR0CSkdvEjxCqaAdN6ANoCEdAnI8L2lEZznV9lChoBkdAkv6xJZntfGgHTegDaAhHQJyPDFS88Ld1fZQoaAZHQJHE1mWdEstoB03oA2gIR0CcljIgNgBtdX2UKGgGR0CPKMFNcnmaaAdN6ANoCEdAnJ4m0mdAgXV9lChoBkdAkv+vIbOu72gHTegDaAhHQJyeJx3mmtR1fZQoaAZHQJD3lRgqmTFoB03oA2gIR0Ccnid0JWvKdX2UKGgGR0CQoH8f3evZaAdN6ANoCEdAnKTY7JW/8HV9lChoBkdAj57MLncL0GgHTegDaAhHQJys17kXDWN1fZQoaAZHQJH++G47Rv5oB03oA2gIR0CcrNgUlAu7dX2UKGgGR0CSVZMERraeaAdN6ANoCEdAnKzYe1a4c3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-72-generic-x86_64-with-glibc2.29 # 79~20.04.1-Ubuntu SMP Thu Apr 20 22:12:07 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.22.0", "Gym": "0.17.3"}} |