Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -1
- a2c-PandaReachDense-v2/data +34 -35
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +1 -1
- a2c-PandaReachDense-v2/system_info.txt +5 -5
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.71 +/- 1.68
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:022a6f794a8e5b262a3daf20496f34f3066bd41f2de0228d1f7716d2d0c48d0a
|
3 |
+
size 107855
|
a2c-PandaReachDense-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.8.
|
|
|
1 |
+
1.8.0a2
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,24 +19,46 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"num_timesteps": 1000000,
|
23 |
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,19 +66,18 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[ 0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
-
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
@@ -69,27 +90,5 @@
|
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
71 |
"max_grad_norm": 0.5,
|
72 |
-
"normalize_advantage": false
|
73 |
-
"observation_space": {
|
74 |
-
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
-
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
-
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
-
"_shape": null,
|
78 |
-
"dtype": null,
|
79 |
-
"_np_random": null
|
80 |
-
},
|
81 |
-
"action_space": {
|
82 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
-
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
-
"dtype": "float32",
|
85 |
-
"_shape": [
|
86 |
-
3
|
87 |
-
],
|
88 |
-
"low": "[-1. -1. -1.]",
|
89 |
-
"high": "[1. 1. 1.]",
|
90 |
-
"bounded_below": "[ True True True]",
|
91 |
-
"bounded_above": "[ True True True]",
|
92 |
-
"_np_random": null
|
93 |
-
},
|
94 |
-
"n_envs": 4
|
95 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5f65920430>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f5f65919ae0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
"num_timesteps": 1000000,
|
45 |
"_total_timesteps": 1000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1684436232514545132,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVawIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFAvaG9tZS9ydWJlbi8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgCjAhDZWxsVHlwZZSFlFKUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgcRz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtuPBPrSDADxL9w0/tuPBPrSDADxL9w0/tuPBPrSDADxL9w0/tuPBPrSDADxL9w0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO+Bkv4S6VL9ErwG/qM7SP0TwzD8Knq6+USCtPxjTtr962wO+gGeRv7RjTT9tN4O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC248E+tIMAPEv3DT8Fx0E8vOFZuuVzIDy248E+tIMAPEv3DT8Fx0E8vOFZuuVzIDy248E+tIMAPEv3DT8Fx0E8vOFZuuVzIDy248E+tIMAPEv3DT8Fx0E8vOFZuuVzIDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.37869042 0.0078439 0.55455464]\n [0.37869042 0.0078439 0.55455464]\n [0.37869042 0.0078439 0.55455464]\n [0.37869042 0.0078439 0.55455464]]",
|
60 |
+
"desired_goal": "[[-0.8940465 -0.830971 -0.5065806 ]\n [ 1.6469316 1.6010823 -0.3410495 ]\n [ 1.3525487 -1.4283171 -0.12876692]\n [-1.1359711 0.8023026 -1.025129 ]]",
|
61 |
+
"observation": "[[ 0.37869042 0.0078439 0.55455464 0.01182724 -0.00083115 0.00979326]\n [ 0.37869042 0.0078439 0.55455464 0.01182724 -0.00083115 0.00979326]\n [ 0.37869042 0.0078439 0.55455464 0.01182724 -0.00083115 0.00979326]\n [ 0.37869042 0.0078439 0.55455464 0.01182724 -0.00083115 0.00979326]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAa6QMPttelzzzxsc9uhXjvR6ijL1v/E0+1X2SvOTOarxdYGA+lJu4PLJUsjyKcTY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.13734595 0.01847785 0.09754743]\n [-0.11088128 -0.06866859 0.20115827]\n [-0.01788227 -0.01433155 0.2191176 ]\n [ 0.02253512 0.0217689 0.17816749]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
|
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgV64c2EEC8CUhpRSlIwBbJRLMowBdJRHQJbTjFrEcbR1fZQoaAZoCWgPQwhpp+Zyg7EUwJSGlFKUaBVLMmgWR0CW00k078vVdX2UKGgGaAloD0MI0TsVcM9TDcCUhpRSlGgVSzJoFkdAltMGI0qH5HV9lChoBmgJaA9DCEAUzJiC1Q7AlIaUUpRoFUsyaBZHQJbSwSyt3fR1fZQoaAZoCWgPQwgdyHpq9dUPwJSGlFKUaBVLMmgWR0CW1IlY2bXpdX2UKGgGaAloD0MIQuvhy0RhEMCUhpRSlGgVSzJoFkdAltRGH1vl2nV9lChoBmgJaA9DCFGE1O3sixHAlIaUUpRoFUsyaBZHQJbUAw22oeh1fZQoaAZoCWgPQwjVsrW+SMgRwJSGlFKUaBVLMmgWR0CW074LCvX9dX2UKGgGaAloD0MI4ZaPpKSnDMCUhpRSlGgVSzJoFkdAltWJJwsGxHV9lChoBmgJaA9DCBn+0w0UeAfAlIaUUpRoFUsyaBZHQJbVReLNwBJ1fZQoaAZoCWgPQwg34V6Zt6oIwJSGlFKUaBVLMmgWR0CW1QLiMo+fdX2UKGgGaAloD0MIfR8OEqIMEcCUhpRSlGgVSzJoFkdAltS94mkWRHV9lChoBmgJaA9DCMjvbfqzzxDAlIaUUpRoFUsyaBZHQJbWkYR/ViF1fZQoaAZoCWgPQwhMGTigpesJwJSGlFKUaBVLMmgWR0CW1k5IH1OCdX2UKGgGaAloD0MIPdNLjGXaEsCUhpRSlGgVSzJoFkdAltYLTYukDnV9lChoBmgJaA9DCE57Ss6J7RLAlIaUUpRoFUsyaBZHQJbVxs67ulZ1fZQoaAZoCWgPQwjmstE5P8UPwJSGlFKUaBVLMmgWR0CW169hqj8DdX2UKGgGaAloD0MIMe2b+6vHEMCUhpRSlGgVSzJoFkdAltdsHSnccnV9lChoBmgJaA9DCGkbf6KyQQrAlIaUUpRoFUsyaBZHQJbXKTgVGkN1fZQoaAZoCWgPQwhODTSfc9cHwJSGlFKUaBVLMmgWR0CW1uSGahHtdX2UKGgGaAloD0MI+WUwRiRaEMCUhpRSlGgVSzJoFkdAltixgeA/cHV9lChoBmgJaA9DCC47xD9saRjAlIaUUpRoFUsyaBZHQJbYbjfek591fZQoaAZoCWgPQwiMLJljedcFwJSGlFKUaBVLMmgWR0CW2CsRQJokdX2UKGgGaAloD0MIr7DgfsBjCMCUhpRSlGgVSzJoFkdAltfmJN0vG3V9lChoBmgJaA9DCFrW/WMhihHAlIaUUpRoFUsyaBZHQJbZq+UQkHF1fZQoaAZoCWgPQwiKWS+GciIMwJSGlFKUaBVLMmgWR0CW2WjkMkQgdX2UKGgGaAloD0MId/aVB+mJEsCUhpRSlGgVSzJoFkdAltkl5a/yoXV9lChoBmgJaA9DCCIXnMHfjw7AlIaUUpRoFUsyaBZHQJbY4N/e+Eh1fZQoaAZoCWgPQwiGkzR/TMsMwJSGlFKUaBVLMmgWR0CW2qxAB1cMdX2UKGgGaAloD0MIZavLKQGxDsCUhpRSlGgVSzJoFkdAltppGOMl1XV9lChoBmgJaA9DCOXQItv5/gjAlIaUUpRoFUsyaBZHQJbaJiKBNEh1fZQoaAZoCWgPQwizeofboYEGwJSGlFKUaBVLMmgWR0CW2eEb5uZUdX2UKGgGaAloD0MI3gTfNH02AMCUhpRSlGgVSzJoFkdAltuqhpQDWHV9lChoBmgJaA9DCBufyf55GhLAlIaUUpRoFUsyaBZHQJbbZ03fhuR1fZQoaAZoCWgPQwg1KQXdXlILwJSGlFKUaBVLMmgWR0CW2yRxtHhCdX2UKGgGaAloD0MI/Yf029cBEMCUhpRSlGgVSzJoFkdAltrfi97F9HV9lChoBmgJaA9DCKd4XFSLSA/AlIaUUpRoFUsyaBZHQJbcrgiu+yt1fZQoaAZoCWgPQwgV4SajynAGwJSGlFKUaBVLMmgWR0CW3GrBj4HpdX2UKGgGaAloD0MIBqG8j6M5DcCUhpRSlGgVSzJoFkdAltwnrIHTqnV9lChoBmgJaA9DCA2oN6PmiwfAlIaUUpRoFUsyaBZHQJbb4qtozvZ1fZQoaAZoCWgPQwjYLJeNzhkJwJSGlFKUaBVLMmgWR0CW3ajdYW+HdX2UKGgGaAloD0MIzGCMSBT6D8CUhpRSlGgVSzJoFkdAlt1lpsXSB3V9lChoBmgJaA9DCKuuQzUlOQnAlIaUUpRoFUsyaBZHQJbdIqDsdDJ1fZQoaAZoCWgPQwjNVl7yP5kQwJSGlFKUaBVLMmgWR0CW3N2vStvGdX2UKGgGaAloD0MIBrth26J8FcCUhpRSlGgVSzJoFkdAlt6pJ9RaYHV9lChoBmgJaA9DCF3cRgN4aw7AlIaUUpRoFUsyaBZHQJbeZdszl911fZQoaAZoCWgPQwiJt86/XXYCwJSGlFKUaBVLMmgWR0CW3iK5CngpdX2UKGgGaAloD0MIoU0On3TyGMCUhpRSlGgVSzJoFkdAlt3du+AVf3V9lChoBmgJaA9DCCl1yThGMg7AlIaUUpRoFUsyaBZHQJbfoGu9vjx1fZQoaAZoCWgPQwg5nPnVHKALwJSGlFKUaBVLMmgWR0CW310gKWszdX2UKGgGaAloD0MI+1sC8E/JBsCUhpRSlGgVSzJoFkdAlt8aIN3GGXV9lChoBmgJaA9DCOKS407poA7AlIaUUpRoFUsyaBZHQJbe1Sl3yI51fZQoaAZoCWgPQwjpf7kWLXAQwJSGlFKUaBVLMmgWR0CW4K5Yoy9FdX2UKGgGaAloD0MIpZ9wdmtZCcCUhpRSlGgVSzJoFkdAluBrIgeRxXV9lChoBmgJaA9DCC/cuTDS6xHAlIaUUpRoFUsyaBZHQJbgJ/smfGx1fZQoaAZoCWgPQwgRGVbxRqYLwJSGlFKUaBVLMmgWR0CW3+MMI/qxdX2UKGgGaAloD0MInbzIBPxqFMCUhpRSlGgVSzJoFkdAluGlf7aZhXV9lChoBmgJaA9DCKcjgJvFqwTAlIaUUpRoFUsyaBZHQJbhYnfEXLx1fZQoaAZoCWgPQwhO8E3TZ2cHwJSGlFKUaBVLMmgWR0CW4R9srNGFdX2UKGgGaAloD0MIO3DOiNJ+BcCUhpRSlGgVSzJoFkdAluDac/dIoXV9lChoBmgJaA9DCH79EBssHBPAlIaUUpRoFUsyaBZHQJbiqpda+vh1fZQoaAZoCWgPQwhO7QxTW0oUwJSGlFKUaBVLMmgWR0CW4mdCmdiEdX2UKGgGaAloD0MIP/1nzY8vGcCUhpRSlGgVSzJoFkdAluIkWRA8jnV9lChoBmgJaA9DCJs6j4r/uwbAlIaUUpRoFUsyaBZHQJbh33Ehq0t1fZQoaAZoCWgPQwhFD3wMVmwRwJSGlFKUaBVLMmgWR0CW46yHmA9WdX2UKGgGaAloD0MIb7vQXKcxB8CUhpRSlGgVSzJoFkdAluNpOvdM03V9lChoBmgJaA9DCMfzGVBvlhfAlIaUUpRoFUsyaBZHQJbjJigCfYl1fZQoaAZoCWgPQwizQSYZOasQwJSGlFKUaBVLMmgWR0CW4uE+gUUPdX2UKGgGaAloD0MIfsSvWMNFCMCUhpRSlGgVSzJoFkdAluSv3BYV7HV9lChoBmgJaA9DCKJCdXPxN/i/lIaUUpRoFUsyaBZHQJbkbMHKOkt1fZQoaAZoCWgPQwhjuaXVkFgDwJSGlFKUaBVLMmgWR0CW5Cm1IAfddX2UKGgGaAloD0MIp6/na5arD8CUhpRSlGgVSzJoFkdAluPkuUUwjHV9lChoBmgJaA9DCMAIGjOJuhjAlIaUUpRoFUsyaBZHQJblvCj1wo91fZQoaAZoCWgPQwiIodXJGUoPwJSGlFKUaBVLMmgWR0CW5XjoZAIIdX2UKGgGaAloD0MICeBm8WLhF8CUhpRSlGgVSzJoFkdAluU18G9pRHV9lChoBmgJaA9DCBdmoZ3TrAnAlIaUUpRoFUsyaBZHQJbk8RujynV1fZQoaAZoCWgPQwg89N2tLEERwJSGlFKUaBVLMmgWR0CW5sgi/wiJdX2UKGgGaAloD0MID9B9ObOdBsCUhpRSlGgVSzJoFkdAluaE5lvqDHV9lChoBmgJaA9DCFiR0QFJmAnAlIaUUpRoFUsyaBZHQJbmQdn003x1fZQoaAZoCWgPQwibxvZa0LsNwJSGlFKUaBVLMmgWR0CW5fzpHI6sdX2UKGgGaAloD0MIecvVj02yCsCUhpRSlGgVSzJoFkdAlufRUR3/xXV9lChoBmgJaA9DCLgCCvX00QjAlIaUUpRoFUsyaBZHQJbnjjFQ2uR1fZQoaAZoCWgPQwi0rtFyoMf9v5SGlFKUaBVLMmgWR0CW50szVMEidX2UKGgGaAloD0MIrn/XZ856A8CUhpRSlGgVSzJoFkdAlucGL9/BnHV9lChoBmgJaA9DCAuZK4NqUxHAlIaUUpRoFUsyaBZHQJbo01O0svt1fZQoaAZoCWgPQwiwOQfPhEYEwJSGlFKUaBVLMmgWR0CW6JAckt2+dX2UKGgGaAloD0MI3lm77ULDEMCUhpRSlGgVSzJoFkdAluhNBOYYznV9lChoBmgJaA9DCAAC1qpdwxTAlIaUUpRoFUsyaBZHQJboCBMBZIR1fZQoaAZoCWgPQwj/6QYKvJMHwJSGlFKUaBVLMmgWR0CW6eMir1dxdX2UKGgGaAloD0MInl2+9WF9+L+UhpRSlGgVSzJoFkdAlumf1DjR2XV9lChoBmgJaA9DCOUl/5O/qxLAlIaUUpRoFUsyaBZHQJbpXMNc4YJ1fZQoaAZoCWgPQwh7vfvjvWoLwJSGlFKUaBVLMmgWR0CW6RezD4xldX2UKGgGaAloD0MIcsCuJk8ZBsCUhpRSlGgVSzJoFkdAlurnA6+36XV9lChoBmgJaA9DCGh1cobiDgPAlIaUUpRoFUsyaBZHQJbqo7hegL91fZQoaAZoCWgPQwhLBoAqbswdwJSGlFKUaBVLMmgWR0CW6mCjDbaidX2UKGgGaAloD0MIcCamC7H6EMCUhpRSlGgVSzJoFkdAluobmhdt23V9lChoBmgJaA9DCKtefqfJ7BPAlIaUUpRoFUsyaBZHQJbr5N7Bwdd1fZQoaAZoCWgPQwj9LQH4p/QPwJSGlFKUaBVLMmgWR0CW66HUc4o7dX2UKGgGaAloD0MI/mMhOgQ+E8CUhpRSlGgVSzJoFkdAlutevECNj3V9lChoBmgJaA9DCMx/SL99XQzAlIaUUpRoFUsyaBZHQJbrGfpUxVR1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
90 |
"ent_coef": 0.0,
|
91 |
"vf_coef": 0.5,
|
92 |
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb16762a3888723f05a1191ffa4aa29d12e8e91aa9af741706dfe3b0bdc2fb95
|
3 |
+
size 44670
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:582a95c905a9f3417c7c283ea5a13cef414d31b7ec047b32b7053a158cd60124
|
3 |
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.
|
3 |
-
- Stable-Baselines3: 1.8.
|
4 |
-
- PyTorch:
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.22.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.15.0-72-generic-x86_64-with-glibc2.29 # 79~20.04.1-Ubuntu SMP Thu Apr 20 22:12:07 UTC 2023
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.8.0a2
|
4 |
+
- PyTorch: 1.11.0+cu113
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.0
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff9dbec7b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff9dbecb600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682532314620314974, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcqffPscUlDxJuhI/cqffPscUlDxJuhI/cqffPscUlDxJuhI/cqffPscUlDxJuhI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhsbAP8L6ZD5TPqE/SooSv6P3ib9F95G+FbVZv6ZAyz+vd5W/N6d8PTfRK7+Wu3c/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAByp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTtyp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTtyp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTtyp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43682438 0.01807631 0.573155 ]\n [0.43682438 0.01807631 0.573155 ]\n [0.43682438 0.01807631 0.573155 ]\n [0.43682438 0.01807631 0.573155 ]]", "desired_goal": "[[ 1.5060585 0.22361282 1.2597145 ]\n [-0.5724226 -1.0778698 -0.28508964]\n [-0.85041934 1.5879104 -1.167715 ]\n [ 0.06168291 -0.6711611 0.9677061 ]]", "observation": "[[0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]\n [0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]\n [0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]\n [0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhpl6PYGjZL1zWMg9stuju2XQ+L0ypYA+iG1vvcyOmL1Us2k9Hk6qu24Ru7sTOlE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06118157 -0.05581999 0.09782495]\n [-0.00500055 -0.12149123 0.25126034]\n [-0.05845407 -0.07449111 0.05705579]\n [-0.0051973 -0.00570886 0.2043231 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIls6HZwnSCMCUhpRSlIwBbJRLMowBdJRHQKYC10Cih391fZQoaAZoCWgPQwjku5S6ZOwfwJSGlFKUaBVLMmgWR0CmApuF6AvtdX2UKGgGaAloD0MI4/24/fJZEsCUhpRSlGgVSzJoFkdApgJd+kP+XXV9lChoBmgJaA9DCFvptdlY6RDAlIaUUpRoFUsyaBZHQKYCIgBcRlJ1fZQoaAZoCWgPQwjMtz6sN9oSwJSGlFKUaBVLMmgWR0CmA7bNKRMfdX2UKGgGaAloD0MIAMl06PRcE8CUhpRSlGgVSzJoFkdApgN63d9DyHV9lChoBmgJaA9DCGFtjJ3wsgjAlIaUUpRoFUsyaBZHQKYDPTYNAkd1fZQoaAZoCWgPQwgra5vicWETwJSGlFKUaBVLMmgWR0CmAwEtdzGQdX2UKGgGaAloD0MIBmaFIt0fGcCUhpRSlGgVSzJoFkdApgSX8sMAm3V9lChoBmgJaA9DCF2pZ0EoLwfAlIaUUpRoFUsyaBZHQKYEXB2wFC91fZQoaAZoCWgPQwj5TPbP00AFwJSGlFKUaBVLMmgWR0CmBB6isXBQdX2UKGgGaAloD0MIVhADXftCCsCUhpRSlGgVSzJoFkdApgPiqU/wAnV9lChoBmgJaA9DCHGRe7q6UxvAlIaUUpRoFUsyaBZHQKYFeLNOdoZ1fZQoaAZoCWgPQwjl0CLb+a4fwJSGlFKUaBVLMmgWR0CmBTzWwu/UdX2UKGgGaAloD0MIIJc48kC0EMCUhpRSlGgVSzJoFkdApgT/MwDeTHV9lChoBmgJaA9DCKFq9GqAsgbAlIaUUpRoFUsyaBZHQKYEwzAN5MV1fZQoaAZoCWgPQwhPWOIBZZMcwJSGlFKUaBVLMmgWR0CmBleBYmsvdX2UKGgGaAloD0MIGHyakxcZG8CUhpRSlGgVSzJoFkdApgYbn9vS+nV9lChoBmgJaA9DCDj1geSdowXAlIaUUpRoFUsyaBZHQKYF3hXr+o91fZQoaAZoCWgPQwi+MJkqGBUHwJSGlFKUaBVLMmgWR0CmBaJBX0XhdX2UKGgGaAloD0MIEXFzKhlgGMCUhpRSlGgVSzJoFkdApgc5kf9xZXV9lChoBmgJaA9DCCjVPh2POQzAlIaUUpRoFUsyaBZHQKYG/bblA/t1fZQoaAZoCWgPQwjL2xFOC74LwJSGlFKUaBVLMmgWR0CmBsAJswcpdX2UKGgGaAloD0MIGvm84qnnBsCUhpRSlGgVSzJoFkdApgaEJIDoyXV9lChoBmgJaA9DCF1qhH6mnhPAlIaUUpRoFUsyaBZHQKYIE6QvHtF1fZQoaAZoCWgPQwhr1a4JaU0JwJSGlFKUaBVLMmgWR0CmB9e1KGtZdX2UKGgGaAloD0MIPUZ55uXQCMCUhpRSlGgVSzJoFkdApgeaFbmlqXV9lChoBmgJaA9DCAGG5c+3pQrAlIaUUpRoFUsyaBZHQKYHXixVyWB1fZQoaAZoCWgPQwhyo8haQ2kPwJSGlFKUaBVLMmgWR0CmCO/N7jT8dX2UKGgGaAloD0MIcM0d/S+XBMCUhpRSlGgVSzJoFkdApgi0Aiml7HV9lChoBmgJaA9DCEYL0Laa1RbAlIaUUpRoFUsyaBZHQKYIdmYBvJl1fZQoaAZoCWgPQwhYkGYsmp4YwJSGlFKUaBVLMmgWR0CmCDptJnQIdX2UKGgGaAloD0MIWDfeHRkLEcCUhpRSlGgVSzJoFkdApgnRkXk5qHV9lChoBmgJaA9DCFnDRe7pahLAlIaUUpRoFUsyaBZHQKYJlcX3xnZ1fZQoaAZoCWgPQwjjUpW2uIYgwJSGlFKUaBVLMmgWR0CmCVgkka/AdX2UKGgGaAloD0MI7x8L0SEwDsCUhpRSlGgVSzJoFkdApgkcRaouPHV9lChoBmgJaA9DCKn4vyMqNAzAlIaUUpRoFUsyaBZHQKYKs6shgVp1fZQoaAZoCWgPQwh47dKGw9IWwJSGlFKUaBVLMmgWR0CmCnfMnqmkdX2UKGgGaAloD0MIdES+S6lLBsCUhpRSlGgVSzJoFkdApgo6Kcd5p3V9lChoBmgJaA9DCP1s5LopZQvAlIaUUpRoFUsyaBZHQKYJ/jG1hLJ1fZQoaAZoCWgPQwglH7sLlIQRwJSGlFKUaBVLMmgWR0CmC5fqgRK6dX2UKGgGaAloD0MIQC/cuTDSBcCUhpRSlGgVSzJoFkdApgtcCvHLinV9lChoBmgJaA9DCFeYvtcQ3AvAlIaUUpRoFUsyaBZHQKYLHm/336B1fZQoaAZoCWgPQwj3d7ZHb1gNwJSGlFKUaBVLMmgWR0CmCuKcEvCedX2UKGgGaAloD0MIPKBsyhU+CsCUhpRSlGgVSzJoFkdApgxvEwWWQnV9lChoBmgJaA9DCO6XT1YMZxbAlIaUUpRoFUsyaBZHQKYMMx9G7SR1fZQoaAZoCWgPQwg//tKiPikFwJSGlFKUaBVLMmgWR0CmC/WIfr8jdX2UKGgGaAloD0MIzJiCNc4GCsCUhpRSlGgVSzJoFkdApgu5gPVd5nV9lChoBmgJaA9DCJSgv9AjBgnAlIaUUpRoFUsyaBZHQKYNS3y7PIJ1fZQoaAZoCWgPQwjiVkEMdI0XwJSGlFKUaBVLMmgWR0CmDQ+HrQgLdX2UKGgGaAloD0MIq1yo/GvZEcCUhpRSlGgVSzJoFkdApgzR15jYqXV9lChoBmgJaA9DCNRgGoaPWBnAlIaUUpRoFUsyaBZHQKYMldk8Rth1fZQoaAZoCWgPQwhfKGA7GPERwJSGlFKUaBVLMmgWR0CmDii+tbLVdX2UKGgGaAloD0MIvCAiNe0CBMCUhpRSlGgVSzJoFkdApg3s/GEPD3V9lChoBmgJaA9DCFhUxOkkGwzAlIaUUpRoFUsyaBZHQKYNr1TR6Wx1fZQoaAZoCWgPQwhMGqN1VDUCwJSGlFKUaBVLMmgWR0CmDXNVBD5TdX2UKGgGaAloD0MIKXrgY7CSEcCUhpRSlGgVSzJoFkdApg8HQKKHf3V9lChoBmgJaA9DCET9LmzNNg3AlIaUUpRoFUsyaBZHQKYOy4YrJ8x1fZQoaAZoCWgPQwhTexFtx1QRwJSGlFKUaBVLMmgWR0CmDo3sPatcdX2UKGgGaAloD0MI5gMCnUn7CMCUhpRSlGgVSzJoFkdApg5R79hqkHV9lChoBmgJaA9DCFyrPeyF8hrAlIaUUpRoFUsyaBZHQKYP6q7yxzJ1fZQoaAZoCWgPQwiRuTKoNpgJwJSGlFKUaBVLMmgWR0CmD67lA/s3dX2UKGgGaAloD0MIPV+zXDaaBcCUhpRSlGgVSzJoFkdApg9xM36yjnV9lChoBmgJaA9DCIm3zr9dxhDAlIaUUpRoFUsyaBZHQKYPNUONHYp1fZQoaAZoCWgPQwiRfvs6cO4LwJSGlFKUaBVLMmgWR0CmEMS3Td+HdX2UKGgGaAloD0MIPSzUmuYtGMCUhpRSlGgVSzJoFkdAphCI3eenRHV9lChoBmgJaA9DCDDa44V0uAbAlIaUUpRoFUsyaBZHQKYQS0G/vfF1fZQoaAZoCWgPQwjuQ95y9eMIwJSGlFKUaBVLMmgWR0CmEA8v/R3NdX2UKGgGaAloD0MIQFBu2/fIFMCUhpRSlGgVSzJoFkdAphGfbj94vHV9lChoBmgJaA9DCLYvoBfufAvAlIaUUpRoFUsyaBZHQKYRY5uqFRJ1fZQoaAZoCWgPQwhEM0+uKZAUwJSGlFKUaBVLMmgWR0CmESX3YcvNdX2UKGgGaAloD0MIijve5Lc4EMCUhpRSlGgVSzJoFkdAphDqDK5kLHV9lChoBmgJaA9DCBaFXRQ9wBDAlIaUUpRoFUsyaBZHQKYSgCIUJv51fZQoaAZoCWgPQwito6oJos4FwJSGlFKUaBVLMmgWR0CmEkQ97ngYdX2UKGgGaAloD0MIK76h8NkaD8CUhpRSlGgVSzJoFkdAphIGnO0LMXV9lChoBmgJaA9DCOenOA682gPAlIaUUpRoFUsyaBZHQKYRyrWAf+11fZQoaAZoCWgPQwiq8dJNYlAHwJSGlFKUaBVLMmgWR0CmE2PsiSq3dX2UKGgGaAloD0MIRWgEG9fPE8CUhpRSlGgVSzJoFkdAphMoCnxaxHV9lChoBmgJaA9DCG03wTdNDxHAlIaUUpRoFUsyaBZHQKYS6nTiKix1fZQoaAZoCWgPQwgAGxAhrowTwJSGlFKUaBVLMmgWR0CmEq57gKnfdX2UKGgGaAloD0MIc56xL9n4E8CUhpRSlGgVSzJoFkdAphRFSVGCqnV9lChoBmgJaA9DCA/SU+QQkQrAlIaUUpRoFUsyaBZHQKYUCVLSNOx1fZQoaAZoCWgPQwjb2y3JASsRwJSGlFKUaBVLMmgWR0CmE8utOmBOdX2UKGgGaAloD0MIvRqgNNToDsCUhpRSlGgVSzJoFkdAphOPsmfGuXV9lChoBmgJaA9DCF35LM+DOxnAlIaUUpRoFUsyaBZHQKYVI8h9srN1fZQoaAZoCWgPQwjLTGn9LUENwJSGlFKUaBVLMmgWR0CmFOfe+Eh8dX2UKGgGaAloD0MIcsRafAoAE8CUhpRSlGgVSzJoFkdAphSqWom5UnV9lChoBmgJaA9DCNAn8iTp+gfAlIaUUpRoFUsyaBZHQKYUbnU2DQJ1fZQoaAZoCWgPQwh8LH3ogvoOwJSGlFKUaBVLMmgWR0CmFmv5pJwsdX2UKGgGaAloD0MIq7GEtTH2FcCUhpRSlGgVSzJoFkdAphYws/Y8MnV9lChoBmgJaA9DCH9N1qiHyATAlIaUUpRoFUsyaBZHQKYV87TUiIN1fZQoaAZoCWgPQwiZf/RNmnYdwJSGlFKUaBVLMmgWR0CmFbgzP8htdX2UKGgGaAloD0MITb1uERirBcCUhpRSlGgVSzJoFkdAphfHPE87p3V9lChoBmgJaA9DCKrVV1cFSgrAlIaUUpRoFUsyaBZHQKYXi/336AR1fZQoaAZoCWgPQwgqHEEqxY4GwJSGlFKUaBVLMmgWR0CmF075VOsUdX2UKGgGaAloD0MI63Qg66nVCcCUhpRSlGgVSzJoFkdAphcTdi2Dx3V9lChoBmgJaA9DCBu62R8oBxPAlIaUUpRoFUsyaBZHQKYZIMYuTRp1fZQoaAZoCWgPQwhv05/9SLEGwJSGlFKUaBVLMmgWR0CmGOW6shgWdX2UKGgGaAloD0MIyk4/qIsUGsCUhpRSlGgVSzJoFkdAphior+YMOXV9lChoBmgJaA9DCJEr9SwIZR3AlIaUUpRoFUsyaBZHQKYYbTa0x/N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5f65920430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5f65919ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684436232514545132, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVawIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFAvaG9tZS9ydWJlbi8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgCjAhDZWxsVHlwZZSFlFKUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgcRz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtuPBPrSDADxL9w0/tuPBPrSDADxL9w0/tuPBPrSDADxL9w0/tuPBPrSDADxL9w0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO+Bkv4S6VL9ErwG/qM7SP0TwzD8Knq6+USCtPxjTtr962wO+gGeRv7RjTT9tN4O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC248E+tIMAPEv3DT8Fx0E8vOFZuuVzIDy248E+tIMAPEv3DT8Fx0E8vOFZuuVzIDy248E+tIMAPEv3DT8Fx0E8vOFZuuVzIDy248E+tIMAPEv3DT8Fx0E8vOFZuuVzIDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.37869042 0.0078439 0.55455464]\n [0.37869042 0.0078439 0.55455464]\n [0.37869042 0.0078439 0.55455464]\n [0.37869042 0.0078439 0.55455464]]", "desired_goal": "[[-0.8940465 -0.830971 -0.5065806 ]\n [ 1.6469316 1.6010823 -0.3410495 ]\n [ 1.3525487 -1.4283171 -0.12876692]\n [-1.1359711 0.8023026 -1.025129 ]]", "observation": "[[ 0.37869042 0.0078439 0.55455464 0.01182724 -0.00083115 0.00979326]\n [ 0.37869042 0.0078439 0.55455464 0.01182724 -0.00083115 0.00979326]\n [ 0.37869042 0.0078439 0.55455464 0.01182724 -0.00083115 0.00979326]\n [ 0.37869042 0.0078439 0.55455464 0.01182724 -0.00083115 0.00979326]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAa6QMPttelzzzxsc9uhXjvR6ijL1v/E0+1X2SvOTOarxdYGA+lJu4PLJUsjyKcTY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13734595 0.01847785 0.09754743]\n [-0.11088128 -0.06866859 0.20115827]\n [-0.01788227 -0.01433155 0.2191176 ]\n [ 0.02253512 0.0217689 0.17816749]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgV64c2EEC8CUhpRSlIwBbJRLMowBdJRHQJbTjFrEcbR1fZQoaAZoCWgPQwhpp+Zyg7EUwJSGlFKUaBVLMmgWR0CW00k078vVdX2UKGgGaAloD0MI0TsVcM9TDcCUhpRSlGgVSzJoFkdAltMGI0qH5HV9lChoBmgJaA9DCEAUzJiC1Q7AlIaUUpRoFUsyaBZHQJbSwSyt3fR1fZQoaAZoCWgPQwgdyHpq9dUPwJSGlFKUaBVLMmgWR0CW1IlY2bXpdX2UKGgGaAloD0MIQuvhy0RhEMCUhpRSlGgVSzJoFkdAltRGH1vl2nV9lChoBmgJaA9DCFGE1O3sixHAlIaUUpRoFUsyaBZHQJbUAw22oeh1fZQoaAZoCWgPQwjVsrW+SMgRwJSGlFKUaBVLMmgWR0CW074LCvX9dX2UKGgGaAloD0MI4ZaPpKSnDMCUhpRSlGgVSzJoFkdAltWJJwsGxHV9lChoBmgJaA9DCBn+0w0UeAfAlIaUUpRoFUsyaBZHQJbVReLNwBJ1fZQoaAZoCWgPQwg34V6Zt6oIwJSGlFKUaBVLMmgWR0CW1QLiMo+fdX2UKGgGaAloD0MIfR8OEqIMEcCUhpRSlGgVSzJoFkdAltS94mkWRHV9lChoBmgJaA9DCMjvbfqzzxDAlIaUUpRoFUsyaBZHQJbWkYR/ViF1fZQoaAZoCWgPQwhMGTigpesJwJSGlFKUaBVLMmgWR0CW1k5IH1OCdX2UKGgGaAloD0MIPdNLjGXaEsCUhpRSlGgVSzJoFkdAltYLTYukDnV9lChoBmgJaA9DCE57Ss6J7RLAlIaUUpRoFUsyaBZHQJbVxs67ulZ1fZQoaAZoCWgPQwjmstE5P8UPwJSGlFKUaBVLMmgWR0CW169hqj8DdX2UKGgGaAloD0MIMe2b+6vHEMCUhpRSlGgVSzJoFkdAltdsHSnccnV9lChoBmgJaA9DCGkbf6KyQQrAlIaUUpRoFUsyaBZHQJbXKTgVGkN1fZQoaAZoCWgPQwhODTSfc9cHwJSGlFKUaBVLMmgWR0CW1uSGahHtdX2UKGgGaAloD0MI+WUwRiRaEMCUhpRSlGgVSzJoFkdAltixgeA/cHV9lChoBmgJaA9DCC47xD9saRjAlIaUUpRoFUsyaBZHQJbYbjfek591fZQoaAZoCWgPQwiMLJljedcFwJSGlFKUaBVLMmgWR0CW2CsRQJokdX2UKGgGaAloD0MIr7DgfsBjCMCUhpRSlGgVSzJoFkdAltfmJN0vG3V9lChoBmgJaA9DCFrW/WMhihHAlIaUUpRoFUsyaBZHQJbZq+UQkHF1fZQoaAZoCWgPQwiKWS+GciIMwJSGlFKUaBVLMmgWR0CW2WjkMkQgdX2UKGgGaAloD0MId/aVB+mJEsCUhpRSlGgVSzJoFkdAltkl5a/yoXV9lChoBmgJaA9DCCIXnMHfjw7AlIaUUpRoFUsyaBZHQJbY4N/e+Eh1fZQoaAZoCWgPQwiGkzR/TMsMwJSGlFKUaBVLMmgWR0CW2qxAB1cMdX2UKGgGaAloD0MIZavLKQGxDsCUhpRSlGgVSzJoFkdAltppGOMl1XV9lChoBmgJaA9DCOXQItv5/gjAlIaUUpRoFUsyaBZHQJbaJiKBNEh1fZQoaAZoCWgPQwizeofboYEGwJSGlFKUaBVLMmgWR0CW2eEb5uZUdX2UKGgGaAloD0MI3gTfNH02AMCUhpRSlGgVSzJoFkdAltuqhpQDWHV9lChoBmgJaA9DCBufyf55GhLAlIaUUpRoFUsyaBZHQJbbZ03fhuR1fZQoaAZoCWgPQwg1KQXdXlILwJSGlFKUaBVLMmgWR0CW2yRxtHhCdX2UKGgGaAloD0MI/Yf029cBEMCUhpRSlGgVSzJoFkdAltrfi97F9HV9lChoBmgJaA9DCKd4XFSLSA/AlIaUUpRoFUsyaBZHQJbcrgiu+yt1fZQoaAZoCWgPQwgV4SajynAGwJSGlFKUaBVLMmgWR0CW3GrBj4HpdX2UKGgGaAloD0MIBqG8j6M5DcCUhpRSlGgVSzJoFkdAltwnrIHTqnV9lChoBmgJaA9DCA2oN6PmiwfAlIaUUpRoFUsyaBZHQJbb4qtozvZ1fZQoaAZoCWgPQwjYLJeNzhkJwJSGlFKUaBVLMmgWR0CW3ajdYW+HdX2UKGgGaAloD0MIzGCMSBT6D8CUhpRSlGgVSzJoFkdAlt1lpsXSB3V9lChoBmgJaA9DCKuuQzUlOQnAlIaUUpRoFUsyaBZHQJbdIqDsdDJ1fZQoaAZoCWgPQwjNVl7yP5kQwJSGlFKUaBVLMmgWR0CW3N2vStvGdX2UKGgGaAloD0MIBrth26J8FcCUhpRSlGgVSzJoFkdAlt6pJ9RaYHV9lChoBmgJaA9DCF3cRgN4aw7AlIaUUpRoFUsyaBZHQJbeZdszl911fZQoaAZoCWgPQwiJt86/XXYCwJSGlFKUaBVLMmgWR0CW3iK5CngpdX2UKGgGaAloD0MIoU0On3TyGMCUhpRSlGgVSzJoFkdAlt3du+AVf3V9lChoBmgJaA9DCCl1yThGMg7AlIaUUpRoFUsyaBZHQJbfoGu9vjx1fZQoaAZoCWgPQwg5nPnVHKALwJSGlFKUaBVLMmgWR0CW310gKWszdX2UKGgGaAloD0MI+1sC8E/JBsCUhpRSlGgVSzJoFkdAlt8aIN3GGXV9lChoBmgJaA9DCOKS407poA7AlIaUUpRoFUsyaBZHQJbe1Sl3yI51fZQoaAZoCWgPQwjpf7kWLXAQwJSGlFKUaBVLMmgWR0CW4K5Yoy9FdX2UKGgGaAloD0MIpZ9wdmtZCcCUhpRSlGgVSzJoFkdAluBrIgeRxXV9lChoBmgJaA9DCC/cuTDS6xHAlIaUUpRoFUsyaBZHQJbgJ/smfGx1fZQoaAZoCWgPQwgRGVbxRqYLwJSGlFKUaBVLMmgWR0CW3+MMI/qxdX2UKGgGaAloD0MInbzIBPxqFMCUhpRSlGgVSzJoFkdAluGlf7aZhXV9lChoBmgJaA9DCKcjgJvFqwTAlIaUUpRoFUsyaBZHQJbhYnfEXLx1fZQoaAZoCWgPQwhO8E3TZ2cHwJSGlFKUaBVLMmgWR0CW4R9srNGFdX2UKGgGaAloD0MIO3DOiNJ+BcCUhpRSlGgVSzJoFkdAluDac/dIoXV9lChoBmgJaA9DCH79EBssHBPAlIaUUpRoFUsyaBZHQJbiqpda+vh1fZQoaAZoCWgPQwhO7QxTW0oUwJSGlFKUaBVLMmgWR0CW4mdCmdiEdX2UKGgGaAloD0MIP/1nzY8vGcCUhpRSlGgVSzJoFkdAluIkWRA8jnV9lChoBmgJaA9DCJs6j4r/uwbAlIaUUpRoFUsyaBZHQJbh33Ehq0t1fZQoaAZoCWgPQwhFD3wMVmwRwJSGlFKUaBVLMmgWR0CW46yHmA9WdX2UKGgGaAloD0MIb7vQXKcxB8CUhpRSlGgVSzJoFkdAluNpOvdM03V9lChoBmgJaA9DCMfzGVBvlhfAlIaUUpRoFUsyaBZHQJbjJigCfYl1fZQoaAZoCWgPQwizQSYZOasQwJSGlFKUaBVLMmgWR0CW4uE+gUUPdX2UKGgGaAloD0MIfsSvWMNFCMCUhpRSlGgVSzJoFkdAluSv3BYV7HV9lChoBmgJaA9DCKJCdXPxN/i/lIaUUpRoFUsyaBZHQJbkbMHKOkt1fZQoaAZoCWgPQwhjuaXVkFgDwJSGlFKUaBVLMmgWR0CW5Cm1IAfddX2UKGgGaAloD0MIp6/na5arD8CUhpRSlGgVSzJoFkdAluPkuUUwjHV9lChoBmgJaA9DCMAIGjOJuhjAlIaUUpRoFUsyaBZHQJblvCj1wo91fZQoaAZoCWgPQwiIodXJGUoPwJSGlFKUaBVLMmgWR0CW5XjoZAIIdX2UKGgGaAloD0MICeBm8WLhF8CUhpRSlGgVSzJoFkdAluU18G9pRHV9lChoBmgJaA9DCBdmoZ3TrAnAlIaUUpRoFUsyaBZHQJbk8RujynV1fZQoaAZoCWgPQwg89N2tLEERwJSGlFKUaBVLMmgWR0CW5sgi/wiJdX2UKGgGaAloD0MID9B9ObOdBsCUhpRSlGgVSzJoFkdAluaE5lvqDHV9lChoBmgJaA9DCFiR0QFJmAnAlIaUUpRoFUsyaBZHQJbmQdn003x1fZQoaAZoCWgPQwibxvZa0LsNwJSGlFKUaBVLMmgWR0CW5fzpHI6sdX2UKGgGaAloD0MIecvVj02yCsCUhpRSlGgVSzJoFkdAlufRUR3/xXV9lChoBmgJaA9DCLgCCvX00QjAlIaUUpRoFUsyaBZHQJbnjjFQ2uR1fZQoaAZoCWgPQwi0rtFyoMf9v5SGlFKUaBVLMmgWR0CW50szVMEidX2UKGgGaAloD0MIrn/XZ856A8CUhpRSlGgVSzJoFkdAlucGL9/BnHV9lChoBmgJaA9DCAuZK4NqUxHAlIaUUpRoFUsyaBZHQJbo01O0svt1fZQoaAZoCWgPQwiwOQfPhEYEwJSGlFKUaBVLMmgWR0CW6JAckt2+dX2UKGgGaAloD0MI3lm77ULDEMCUhpRSlGgVSzJoFkdAluhNBOYYznV9lChoBmgJaA9DCAAC1qpdwxTAlIaUUpRoFUsyaBZHQJboCBMBZIR1fZQoaAZoCWgPQwj/6QYKvJMHwJSGlFKUaBVLMmgWR0CW6eMir1dxdX2UKGgGaAloD0MInl2+9WF9+L+UhpRSlGgVSzJoFkdAlumf1DjR2XV9lChoBmgJaA9DCOUl/5O/qxLAlIaUUpRoFUsyaBZHQJbpXMNc4YJ1fZQoaAZoCWgPQwh7vfvjvWoLwJSGlFKUaBVLMmgWR0CW6RezD4xldX2UKGgGaAloD0MIcsCuJk8ZBsCUhpRSlGgVSzJoFkdAlurnA6+36XV9lChoBmgJaA9DCGh1cobiDgPAlIaUUpRoFUsyaBZHQJbqo7hegL91fZQoaAZoCWgPQwhLBoAqbswdwJSGlFKUaBVLMmgWR0CW6mCjDbaidX2UKGgGaAloD0MIcCamC7H6EMCUhpRSlGgVSzJoFkdAluobmhdt23V9lChoBmgJaA9DCKtefqfJ7BPAlIaUUpRoFUsyaBZHQJbr5N7Bwdd1fZQoaAZoCWgPQwj9LQH4p/QPwJSGlFKUaBVLMmgWR0CW66HUc4o7dX2UKGgGaAloD0MI/mMhOgQ+E8CUhpRSlGgVSzJoFkdAlutevECNj3V9lChoBmgJaA9DCMx/SL99XQzAlIaUUpRoFUsyaBZHQJbrGfpUxVR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-72-generic-x86_64-with-glibc2.29 # 79~20.04.1-Ubuntu SMP Thu Apr 20 22:12:07 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.22.0", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -3.710378561075777, "std_reward": 1.6800983699051835, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-18T21:57:34.211163"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06c7f38ef7fa0dc579a86c0c4fb07cc826f3b50b79911f27f33fae9bb9a3f1e0
|
3 |
+
size 3056
|