rmn0ff commited on
Commit
3e7cafc
·
1 Parent(s): c09ff99

tune gamma

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 263.47 +/- 44.34
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 260.70 +/- 50.26
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c9587a830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c9587a8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c9587a950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c9587a9e0>", "_build": "<function ActorCriticPolicy._build at 0x7f6c9587aa70>", "forward": "<function ActorCriticPolicy.forward at 0x7f6c9587ab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c9587ab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6c9587ac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c9587acb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c9587ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c9587add0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6c958459c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651936026.8592339, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIOfZ76myhs/Wh2QPqIG5L6qm7u9IdYSPgAAAAAAAAAAFkiQPn7ctz7jHQW/47KovmAQdTxwsJW+AAAAAAAAAADNclE9XCNnup/DMbvVHN61AJtYupaATDUAAAAAAAAAAJr6sT1sFe88W8KHvsmRgr7mIsG9ClPyOwAAAAAAAAAAM5nEPbjmp7k2St86706VNeXOzzum+wa6AAAAAAAAgD+afUm8XONMugIc4bhkNZWzdUb4uWUsBDgAAIA/AACAP/OtmL3DITW6sD+LOKH59zWCV0m7jQamtwAAAAAAAIA/mu1zvXH7Yrto3Fc8mcySPFbkobzLmns9AACAPwAAgD9NMUm9KvK+P9Ntrr73fO49b2OnvFcTMr4AAAAAAAAAAAA2LLyPeSe8FK43vBlmQzzRjKU9W6MjvQAAgD8AAIA/QEnWPUiVhboITOU6ywCRNaq8FDs0CQW6AAAAAAAAgD9agp+9SP7ePuPxqD0qtrK+Xgszvd6NV70AAAAAAAAAACDlIL60BoY/kwqqvg259b5b8Xy+Xq9EvQAAAAAAAAAAgNKwvYVPMT6CBxA+nJm1vmG1jzyidAs9AAAAAAAAAACAgyo9Q6EIvNJ8ITu3ZhQ8H5ttvaiuBj0AAIA/AACAPzMNnzxIvSU/GAHBOxpM+r43tBI9gQGcvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVFc+y7NBcUCUhpRSlIwBbJRNAgGMAXSUR0CudHG7BfrsdX2UKGgGaAloD0MIKH6MuSs7cUCUhpRSlGgVS+BoFkdArnTNh3JPqXV9lChoBmgJaA9DCLdELjgDbXJAlIaUUpRoFUv1aBZHQK50y41gpjN1fZQoaAZoCWgPQwgvNUI/k/pwQJSGlFKUaBVL52gWR0CudOQjMV1wdX2UKGgGaAloD0MIFtwPeGC0UUCUhpRSlGgVS5toFkdArnUJMtbs4XV9lChoBmgJaA9DCHzxRXu87DRAlIaUUpRoFUuIaBZHQK52WqR2bG51fZQoaAZoCWgPQwjlKavp+lRxQJSGlFKUaBVL6GgWR0CudwAMtseodX2UKGgGaAloD0MI0Qg2rr/PcUCUhpRSlGgVS9poFkdArncaY3Ns33V9lChoBmgJaA9DCOoFn+ZkznFAlIaUUpRoFU0WAWgWR0CudzN+9alldX2UKGgGaAloD0MI4/viUpUxckCUhpRSlGgVS+9oFkdArnc3lEJBxHV9lChoBmgJaA9DCMr7OJpjiHBAlIaUUpRoFUvfaBZHQK54djU/fO51fZQoaAZoCWgPQwgpPGh2XeNyQJSGlFKUaBVNAQFoFkdArniBKWcBl3V9lChoBmgJaA9DCC9NEeC0dXFAlIaUUpRoFU0dAWgWR0CueQTLW7OFdX2UKGgGaAloD0MICAJk6JhpcUCUhpRSlGgVS9xoFkdArnljZBcAznV9lChoBmgJaA9DCAjL2NBNjHFAlIaUUpRoFUvqaBZHQK55Zf+CK791fZQoaAZoCWgPQwhJZB9kGZdxQJSGlFKUaBVL/WgWR0CueW1BdD6WdX2UKGgGaAloD0MILZeNzjmVcUCUhpRSlGgVS+xoFkdArnly9XcQAnV9lChoBmgJaA9DCHJRLSKK3l5AlIaUUpRoFU3oA2gWR0CueiCYb83udX2UKGgGaAloD0MI6wJeZth9b0CUhpRSlGgVTQsBaBZHQK56Jet0V8F1fZQoaAZoCWgPQwj/rs+cNQtyQJSGlFKUaBVLumgWR0CueuG6GxlhdX2UKGgGaAloD0MIym5m9KMsZkCUhpRSlGgVTegDaBZHQK56/Kifxtp1fZQoaAZoCWgPQwhRE30+SmltQJSGlFKUaBVL7mgWR0CuexZOrQw9dX2UKGgGaAloD0MIti3KbFBRcUCUhpRSlGgVS81oFkdArnskuez2OHV9lChoBmgJaA9DCHE486t5D3JAlIaUUpRoFUvbaBZHQK57SLG7z091fZQoaAZoCWgPQwiA9E2ahrdxQJSGlFKUaBVL1mgWR0Cue1s36yjYdX2UKGgGaAloD0MI/rrTnaf4Y0CUhpRSlGgVTegDaBZHQK57l3pwCKd1fZQoaAZoCWgPQwhr8pTVNDhxQJSGlFKUaBVL2GgWR0CufFGlyimEdX2UKGgGaAloD0MIBWucTUeTbkCUhpRSlGgVS/RoFkdArny5ON5t33V9lChoBmgJaA9DCFzoSgSqq3JAlIaUUpRoFUvPaBZHQK582WRigCh1fZQoaAZoCWgPQwje5SK+U6ZxQJSGlFKUaBVL0WgWR0CufOKu8scydX2UKGgGaAloD0MIJ92WyAXFckCUhpRSlGgVS9loFkdArn0QP07KaHV9lChoBmgJaA9DCMzR4/e2p21AlIaUUpRoFUv4aBZHQK59Nqt5le51fZQoaAZoCWgPQwiE9X8OMzxyQJSGlFKUaBVLyGgWR0CufVgFPi1idX2UKGgGaAloD0MI3xtDAHABb0CUhpRSlGgVS9FoFkdArowvcFhXsHV9lChoBmgJaA9DCKdB0TwAgG5AlIaUUpRoFUvbaBZHQK6Men9ehPF1fZQoaAZoCWgPQwgeNSbEnGNxQJSGlFKUaBVL3WgWR0CujJRHPNVzdX2UKGgGaAloD0MI46jcRG1KcUCUhpRSlGgVTRsBaBZHQK6MrqLS/j91fZQoaAZoCWgPQwiOdtzwe6hyQJSGlFKUaBVL1WgWR0CujLE56t1ZdX2UKGgGaAloD0MIayi1F9GQUkCUhpRSlGgVS5VoFkdAroy2zyBkJHV9lChoBmgJaA9DCC6thsQ99XJAlIaUUpRoFUv3aBZHQK6Mx5vcafl1fZQoaAZoCWgPQwhrgT0m0nVyQJSGlFKUaBVL4mgWR0CujSCXY150dX2UKGgGaAloD0MIiUShZd1mcECUhpRSlGgVTWsBaBZHQK6NX4/u9e11fZQoaAZoCWgPQwihgsML4gpzQJSGlFKUaBVLvmgWR0Cujb3lr/KhdX2UKGgGaAloD0MIRpbMsXwockCUhpRSlGgVS8loFkdAro5l5OafBnV9lChoBmgJaA9DCO7qVWS083JAlIaUUpRoFUvhaBZHQK6OdBFd9lV1fZQoaAZoCWgPQwjtD5Tb9kZzQJSGlFKUaBVL3WgWR0Cujt/tY0VKdX2UKGgGaAloD0MIpnwIqgZAcECUhpRSlGgVS/doFkdAro8Ag1WKdnV9lChoBmgJaA9DCC5W1GDad3JAlIaUUpRoFU0MAWgWR0CujyL9uP3jdX2UKGgGaAloD0MI56bNOI0/dECUhpRSlGgVS9loFkdArpAhGYrrgXV9lChoBmgJaA9DCKOs30zMCW9AlIaUUpRoFUvaaBZHQK6QQsasIVx1fZQoaAZoCWgPQwinQdE8wNJwQJSGlFKUaBVL42gWR0CukHE9lmOEdX2UKGgGaAloD0MIUWhZ9w/DcUCUhpRSlGgVS9FoFkdArpCcpTdcjnV9lChoBmgJaA9DCBea6zQSWnFAlIaUUpRoFUv9aBZHQK6QrjPv8ZV1fZQoaAZoCWgPQwj922W/7iJ0QJSGlFKUaBVNDwFoFkdArpC5xT850nV9lChoBmgJaA9DCKTH7216K3NAlIaUUpRoFU0EAWgWR0CukPid8RcvdX2UKGgGaAloD0MIvCAiNW3zbUCUhpRSlGgVTQIBaBZHQK6RBuO0b991fZQoaAZoCWgPQwjFH0Wd+TtwQJSGlFKUaBVL52gWR0CukTBP9DQadX2UKGgGaAloD0MIZCR7hJpFT0CUhpRSlGgVS4poFkdArpE3rGBFu3V9lChoBmgJaA9DCH6NJEE4t25AlIaUUpRoFUvzaBZHQK6RwEJ0GNd1fZQoaAZoCWgPQwjVJeMYScBxQJSGlFKUaBVL42gWR0CukjSH/LkkdX2UKGgGaAloD0MI2h694X6ncECUhpRSlGgVS+loFkdArpJAVwgkknV9lChoBmgJaA9DCLYsX5chnXFAlIaUUpRoFUvVaBZHQK6SfgpBomJ1fZQoaAZoCWgPQwieCOI8nFQ5QJSGlFKUaBVLpGgWR0Cukr0pEx7BdX2UKGgGaAloD0MITtTS3IrzcUCUhpRSlGgVS9xoFkdArpK6B3A2ynV9lChoBmgJaA9DCIffTbfsm3JAlIaUUpRoFUvRaBZHQK6TuMAFPi11fZQoaAZoCWgPQwiwO915onNxQJSGlFKUaBVLzWgWR0CulC9B0ITodX2UKGgGaAloD0MIbqErESh1ckCUhpRSlGgVS8poFkdArpQzGaQV9HV9lChoBmgJaA9DCH4AUps4sXJAlIaUUpRoFUvgaBZHQK6UP0Lc9GJ1fZQoaAZoCWgPQwjSqwFKw8ZwQJSGlFKUaBVL5WgWR0CulEkoOQQudX2UKGgGaAloD0MIejnsvuMgcUCUhpRSlGgVTQoBaBZHQK6UfwXIlt11fZQoaAZoCWgPQwgYC0PkdBVzQJSGlFKUaBVL0WgWR0CulIWugYgrdX2UKGgGaAloD0MIgJpattbRcECUhpRSlGgVS+doFkdArpTPLxI8Q3V9lChoBmgJaA9DCKjEdYyr2HJAlIaUUpRoFU0lAWgWR0CulS7/GVAzdX2UKGgGaAloD0MIUrXdBN+GcUCUhpRSlGgVS+VoFkdArpVSCxu89XV9lChoBmgJaA9DCDnyQGSR1HFAlIaUUpRoFUvVaBZHQK6VkXHim2t1fZQoaAZoCWgPQwhN9WT+0WtzQJSGlFKUaBVL22gWR0CuleJKraM8dX2UKGgGaAloD0MIV5OnrOY+ckCUhpRSlGgVS/doFkdArpYE2eg+QnV9lChoBmgJaA9DCEpFY+2vTnFAlIaUUpRoFUvbaBZHQK6WIK9f1Hx1fZQoaAZoCWgPQwhVibK3lIZxQJSGlFKUaBVL52gWR0CulkpSR8txdX2UKGgGaAloD0MIwVjfwOTjbkCUhpRSlGgVS9JoFkdArpbmBSUC73V9lChoBmgJaA9DCCBB8WPMfnFAlIaUUpRoFUvQaBZHQK6XVZq20At1fZQoaAZoCWgPQwhP5h99U/hwQJSGlFKUaBVL2mgWR0Cul3RKg7HRdX2UKGgGaAloD0MIn3djQaFRcECUhpRSlGgVS+FoFkdArpeQB5ooNXV9lChoBmgJaA9DCEseT8uPG3FAlIaUUpRoFUvWaBZHQK6XrshPj4p1fZQoaAZoCWgPQwgPYJFfP8BwQJSGlFKUaBVL8GgWR0Cul93cxj8UdX2UKGgGaAloD0MIDTm2niFhU0CUhpRSlGgVS7doFkdArpgODQJHAnV9lChoBmgJaA9DCK0wfa8hB3JAlIaUUpRoFUvOaBZHQK6YozCUHIJ1fZQoaAZoCWgPQwiKVYMwd0pyQJSGlFKUaBVNAAFoFkdArpiin1nM+3V9lChoBmgJaA9DCB8wD5myPnFAlIaUUpRoFU3XA2gWR0CumLCQ9zOpdX2UKGgGaAloD0MIysABLV3CcECUhpRSlGgVTSUBaBZHQK6Y4eXiR4h1fZQoaAZoCWgPQwgQXOUJxOByQJSGlFKUaBVNEAFoFkdArpk6s8xKx3V9lChoBmgJaA9DCPomTYMigHFAlIaUUpRoFUvgaBZHQK6ZqVPepGZ1fZQoaAZoCWgPQwjWxtgJ7/JwQJSGlFKUaBVL92gWR0CumdmzjWCmdX2UKGgGaAloD0MINBDLZo4ocUCUhpRSlGgVS9BoFkdArpoUP4EfT3V9lChoBmgJaA9DCKck63C0vHFAlIaUUpRoFUvLaBZHQK6aeZiNKiB1fZQoaAZoCWgPQwi6TbhXZnZxQJSGlFKUaBVLzGgWR0CumpxOLzf8dX2UKGgGaAloD0MIDXBBtiw7OkCUhpRSlGgVS4poFkdArprdAHE/B3V9lChoBmgJaA9DCDKs4o3Mqm9AlIaUUpRoFUvjaBZHQK6bOEEkjX51fZQoaAZoCWgPQwjPukbLQbZxQJSGlFKUaBVL4WgWR0Cum6IEjgQ6dX2UKGgGaAloD0MIYYpyaXzQb0CUhpRSlGgVS9RoFkdArpwVQfp2U3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 616, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c9587a830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c9587a8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c9587a950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c9587a9e0>", "_build": "<function ActorCriticPolicy._build at 0x7f6c9587aa70>", "forward": "<function ActorCriticPolicy.forward at 0x7f6c9587ab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c9587ab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6c9587ac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c9587acb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c9587ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c9587add0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6c958459c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651938682.1329627, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZ6az2Pmn66Pgkgu7KUrzciNRG7e3rPtgAAAAAAAAAAc56WPVKluT/vcDQ/3p1kPc2fpTu+DQY+AAAAAAAAAADm2Dk99kB9uvKAyLuThmexKZtvu3IXn7MAAIA/AACAP2b1q7ytGIY/VTLXvCMvO79brb69fbR7vAAAAAAAAAAAozKDvvpwWL2dUya8KQrquuVouT4JVqY7AACAPwAAgD8N8JC9+RJgP4axDL4TwSi/47kLvntNKDoAAAAAAAAAAM3cXjv29CO6Ygh2stZbdCk874O6I0RoMwAAgD8AAIA/k0wKvin+Xj5Viys+vznKvh46WD2pUjo8AAAAAAAAAADNmHg+mu4GP8pfib0xhhm/4gHgPsvKLLwAAAAAAAAAALDngD7UkCy9ZbVmPLnIZbq6oZS+CtIRvAAAgD8AAIA/LfJlPkiRv7xp/Ea7fHuxOVxFLb5ii4A6AACAPwAAAADacD0+LsigP9ByFT9j+h2/DjVrPtLWgT4AAAAAAAAAAJqXOz2uwaC6vcDbOkBaoDWZtXG6+vv8uQAAAAAAAAAAmlcDvAXSpLujN1A8v4+9PHcjDb3Sp549AACAPwAAgD/Nwvm84aS1utTpnbVTjH6wSc9cuZKWpjQAAIA/AACAPypXkT5sFPA+ndzwu9cEAb+wOJ0+WRQ8vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUIvBw/SUckCUhpRSlIwBbJRLy4wBdJRHQLp0ijbBXS11fZQoaAZoCWgPQwh39SoyuiZ0QJSGlFKUaBVNBQFoFkdAunSW4c3l0nV9lChoBmgJaA9DCPyMCwfCeXFAlIaUUpRoFUvFaBZHQLp0qOxjawl1fZQoaAZoCWgPQwgv3LkwEpJyQJSGlFKUaBVLxWgWR0C6dLSjYZl4dX2UKGgGaAloD0MIrwrUYnCBcUCUhpRSlGgVS85oFkdAunT1lFtsN3V9lChoBmgJaA9DCPtbAvDPc25AlIaUUpRoFUu4aBZHQLp1UUAksz51fZQoaAZoCWgPQwjBq+XOTP1vQJSGlFKUaBVLy2gWR0C6dXBUzbeudX2UKGgGaAloD0MIeNLCZZV2cUCUhpRSlGgVTScBaBZHQLp1ezt1IRR1fZQoaAZoCWgPQwhy3v/HSRByQJSGlFKUaBVLrmgWR0C6daeFHrhSdX2UKGgGaAloD0MIuD1BYrs/cECUhpRSlGgVS69oFkdAunW6tA9mpXV9lChoBmgJaA9DCNApyM+GCnBAlIaUUpRoFUvEaBZHQLp2FgR9PUN1fZQoaAZoCWgPQwhodt1bUQNyQJSGlFKUaBVLt2gWR0C6diAqiGnGdX2UKGgGaAloD0MIHsNjP8uVc0CUhpRSlGgVS8toFkdAunYioFV1fXV9lChoBmgJaA9DCDeOWItP0m9AlIaUUpRoFUu2aBZHQLp2MfReC051fZQoaAZoCWgPQwiqm4u/be5vQJSGlFKUaBVLzmgWR0C6dkdthuwYdX2UKGgGaAloD0MIYyXmWYmWc0CUhpRSlGgVS7BoFkdAunZ2qaPS2HV9lChoBmgJaA9DCK/S3XU26XFAlIaUUpRoFUu1aBZHQLp3CYukDZF1fZQoaAZoCWgPQwgtQUZAxURyQJSGlFKUaBVLxmgWR0C6dxEMb3oLdX2UKGgGaAloD0MIIPEr1jB8c0CUhpRSlGgVTRYBaBZHQLp3IcbR4Ql1fZQoaAZoCWgPQwhcV8wIr4JxQJSGlFKUaBVLs2gWR0C6d1eaScLCdX2UKGgGaAloD0MIuOaO/tcXc0CUhpRSlGgVS9hoFkdAundmxA0KqnV9lChoBmgJaA9DCGa9GMpJKnFAlIaUUpRoFUvQaBZHQLp3hWfK6nR1fZQoaAZoCWgPQwgX2GMi5dNxQJSGlFKUaBVLsWgWR0C6d7r3Cbc5dX2UKGgGaAloD0MIu2BwzZ3qcUCUhpRSlGgVS69oFkdAunfItBfKIXV9lChoBmgJaA9DCCFX6lnQTXFAlIaUUpRoFUvDaBZHQLp359/z8P51fZQoaAZoCWgPQwhb0eY4t8hwQJSGlFKUaBVLyWgWR0C6eB0kB0ZFdX2UKGgGaAloD0MIF0hQ/Bg/ZECUhpRSlGgVTegDaBZHQLp4LC9RJmN1fZQoaAZoCWgPQwhkV1pG6vtxQJSGlFKUaBVL4mgWR0C6eIEAHVwxdX2UKGgGaAloD0MIQ8ajVMJKX0CUhpRSlGgVTegDaBZHQLp4odfLLZB1fZQoaAZoCWgPQwivCz84H4FzQJSGlFKUaBVNJgFoFkdAuni29alk6XV9lChoBmgJaA9DCMB63LfaEnRAlIaUUpRoFUu9aBZHQLp4yFnZkCp1fZQoaAZoCWgPQwhJg9vaAppyQJSGlFKUaBVL52gWR0C6eQ6RdQfqdX2UKGgGaAloD0MIbMzriAPzcUCUhpRSlGgVS9RoFkdAunkmE384xXV9lChoBmgJaA9DCPflzHYFAGZAlIaUUpRoFU3oA2gWR0C6eTH6dlNDdX2UKGgGaAloD0MIknnkD8ZkcECUhpRSlGgVS7VoFkdAunk/sniNsHV9lChoBmgJaA9DCIcZGk/EmnFAlIaUUpRoFUvTaBZHQLqAPhDw6Qx1fZQoaAZoCWgPQwgfSUkPw6hxQJSGlFKUaBVLtmgWR0C6gFekYXO4dX2UKGgGaAloD0MITyLCv4jac0CUhpRSlGgVS8loFkdAuoBhxVAAyXV9lChoBmgJaA9DCBnG3SBa/3FAlIaUUpRoFU00AWgWR0C6gI/EOy3TdX2UKGgGaAloD0MIOV6B6EmFcUCUhpRSlGgVS7poFkdAuoCVNQCSzXV9lChoBmgJaA9DCLL0oQtqonBAlIaUUpRoFUvNaBZHQLqArDSw4bV1fZQoaAZoCWgPQwhu+rMfqSJxQJSGlFKUaBVL0WgWR0C6gQrVWjoIdX2UKGgGaAloD0MIxLKZQ9Iob0CUhpRSlGgVS8toFkdAuoEeAz544nV9lChoBmgJaA9DCDo978YCs3FAlIaUUpRoFUvMaBZHQLqBNT4L1Ep1fZQoaAZoCWgPQwgP0lPkEEpxQJSGlFKUaBVLxGgWR0C6gTjmKZUldX2UKGgGaAloD0MIWMfxQ+UyckCUhpRSlGgVS6hoFkdAuoFHtJFspHV9lChoBmgJaA9DCEf/y7VoxXJAlIaUUpRoFUuzaBZHQLqBcENvwVl1fZQoaAZoCWgPQwhIisiwitVtQJSGlFKUaBVLtmgWR0C6gYAZXMhYdX2UKGgGaAloD0MIX5oiwOn9b0CUhpRSlGgVS7loFkdAuoGePQv6CXV9lChoBmgJaA9DCFwExvrGdnJAlIaUUpRoFUvIaBZHQLqB4d5Y5kt1fZQoaAZoCWgPQwidnKG4o6JyQJSGlFKUaBVL7GgWR0C6gfdTkyULdX2UKGgGaAloD0MILxSwHQwfb0CUhpRSlGgVS8RoFkdAuoIQlZ5iVnV9lChoBmgJaA9DCIWwGktYMnFAlIaUUpRoFUvDaBZHQLqCKSL61st1fZQoaAZoCWgPQwjf/IaJhuBwQJSGlFKUaBVNBQFoFkdAuoJT4QBgeHV9lChoBmgJaA9DCK8nui48M3BAlIaUUpRoFUu6aBZHQLqCe7PY4AF1fZQoaAZoCWgPQwgdc56x75JyQJSGlFKUaBVNAgFoFkdAuoKJhLGrCHV9lChoBmgJaA9DCHNnJhgOG3FAlIaUUpRoFUvFaBZHQLqCogXuVop1fZQoaAZoCWgPQwhQw7ewLkpwQJSGlFKUaBVLvGgWR0C6gqkRnOB2dX2UKGgGaAloD0MI+dhdoKRRcUCUhpRSlGgVS8poFkdAuoLP/bTMJXV9lChoBmgJaA9DCCEf9GzWrnFAlIaUUpRoFUvZaBZHQLqC3L876pJ1fZQoaAZoCWgPQwhxdmuZTAJzQJSGlFKUaBVLuGgWR0C6gukK/mDEdX2UKGgGaAloD0MIeNDsujejcUCUhpRSlGgVS9toFkdAuoNOeEqUeXV9lChoBmgJaA9DCDwUBfpEpHBAlIaUUpRoFUu1aBZHQLqDW9AooeB1fZQoaAZoCWgPQwhg5dAi2+dxQJSGlFKUaBVLt2gWR0C6g47O7g89dX2UKGgGaAloD0MIn+i68EOBckCUhpRSlGgVS+BoFkdAuoOcKD0163V9lChoBmgJaA9DCAg6WtWSH2JAlIaUUpRoFU3oA2gWR0C6g6E12q1gdX2UKGgGaAloD0MId4cUA6QObkCUhpRSlGgVS8ZoFkdAuoPTn8sMAnV9lChoBmgJaA9DCMEeEylNz25AlIaUUpRoFUu/aBZHQLqEH2aDwph1fZQoaAZoCWgPQwiMuWsJObpxQJSGlFKUaBVLxWgWR0C6hCTSb6P9dX2UKGgGaAloD0MIipElc+yzckCUhpRSlGgVS9hoFkdAuoQjtlZownV9lChoBmgJaA9DCBVVv9K59nBAlIaUUpRoFUvXaBZHQLqEMg+hXbN1fZQoaAZoCWgPQwg3M/rRMDxwQJSGlFKUaBVLvWgWR0C6hFeKO1fFdX2UKGgGaAloD0MIirDh6RVKcUCUhpRSlGgVS8ZoFkdAuoR3f779AHV9lChoBmgJaA9DCK9BX3p7oHFAlIaUUpRoFUvdaBZHQLqEipdKNAF1fZQoaAZoCWgPQwhLBoAqrhNwQJSGlFKUaBVLq2gWR0C6hP7Cm/FjdX2UKGgGaAloD0MIpdjROFRIc0CUhpRSlGgVS85oFkdAuoUETbnHN3V9lChoBmgJaA9DCDTW/s72L3BAlIaUUpRoFUu3aBZHQLqFH6dDpkh1fZQoaAZoCWgPQwjk9PV8jZBxQJSGlFKUaBVL0WgWR0C6hUgCOmzjdX2UKGgGaAloD0MISb4SSAkoc0CUhpRSlGgVS8toFkdAuoWKZRbbDnV9lChoBmgJaA9DCMDpXbxfiXNAlIaUUpRoFU0WAWgWR0C6hZm0u14PdX2UKGgGaAloD0MI+u3rwLl5ckCUhpRSlGgVS7BoFkdAuoWlpblijXV9lChoBmgJaA9DCLABEeJKPXBAlIaUUpRoFUu8aBZHQLqFujxTbWV1fZQoaAZoCWgPQwjnjCjtTTVwQJSGlFKUaBVLvWgWR0C6hb+ws5GSdX2UKGgGaAloD0MIQfUPIpmlc0CUhpRSlGgVS7xoFkdAuoYtxiobXHV9lChoBmgJaA9DCAcMkj5tn3FAlIaUUpRoFUvgaBZHQLqGS9hqj8F1fZQoaAZoCWgPQwjbNLbXAsRxQJSGlFKUaBVL4WgWR0C6hnUrK/21dX2UKGgGaAloD0MIHCeFeY/rZkCUhpRSlGgVTegDaBZHQLqGdM98qnZ1fZQoaAZoCWgPQwgk7xzKUPtNQJSGlFKUaBVLf2gWR0C6hs5VS4vwdX2UKGgGaAloD0MIbMuAs9TUcECUhpRSlGgVS89oFkdAuobkHgP3BnV9lChoBmgJaA9DCK6f/rNmwnJAlIaUUpRoFUvVaBZHQLqG7UiILw51fZQoaAZoCWgPQwii725lCcpuQJSGlFKUaBVLwGgWR0C6hwXB1s+FdX2UKGgGaAloD0MIayxhbcw3c0CUhpRSlGgVS+poFkdAuodErqdH2HV9lChoBmgJaA9DCHhflQvVvHBAlIaUUpRoFUvJaBZHQLqHZsPatcR1fZQoaAZoCWgPQwizeofbIRhxQJSGlFKUaBVLxGgWR0C6h5HOryUcdX2UKGgGaAloD0MIlGjJ4+mrcUCUhpRSlGgVS69oFkdAuogujh1klXV9lChoBmgJaA9DCKg4DrzaaHFAlIaUUpRoFUvGaBZHQLqIQEpAlfJ1fZQoaAZoCWgPQwgF3zR9thVzQJSGlFKUaBVL7GgWR0C6iI+NPxhEdX2UKGgGaAloD0MIhpDz/n9PcUCUhpRSlGgVS9ZoFkdAuoiga/ATI3V9lChoBmgJaA9DCFM+BFUj6m9AlIaUUpRoFUuxaBZHQLqIpDPWxyJ1fZQoaAZoCWgPQwhlqIqp9GVxQJSGlFKUaBVLu2gWR0C6iNhM8HObdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2_gamma_0.99 ADDED
Binary file (144 kB). View file
 
ppo-LunarLander-v2_gamma_99.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35c9d6178837da8f758e9b71ce891c89f94c1ecee3aa757f3dd94d6802409200
3
+ size 143997
ppo-LunarLander-v2_gamma_99/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2_gamma_99/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c9587a830>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c9587a8c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c9587a950>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c9587a9e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6c9587aa70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6c9587ab00>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c9587ab90>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6c9587ac20>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c9587acb0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c9587ad40>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c9587add0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f6c958459c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651938682.1329627,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZ6az2Pmn66Pgkgu7KUrzciNRG7e3rPtgAAAAAAAAAAc56WPVKluT/vcDQ/3p1kPc2fpTu+DQY+AAAAAAAAAADm2Dk99kB9uvKAyLuThmexKZtvu3IXn7MAAIA/AACAP2b1q7ytGIY/VTLXvCMvO79brb69fbR7vAAAAAAAAAAAozKDvvpwWL2dUya8KQrquuVouT4JVqY7AACAPwAAgD8N8JC9+RJgP4axDL4TwSi/47kLvntNKDoAAAAAAAAAAM3cXjv29CO6Ygh2stZbdCk874O6I0RoMwAAgD8AAIA/k0wKvin+Xj5Viys+vznKvh46WD2pUjo8AAAAAAAAAADNmHg+mu4GP8pfib0xhhm/4gHgPsvKLLwAAAAAAAAAALDngD7UkCy9ZbVmPLnIZbq6oZS+CtIRvAAAgD8AAIA/LfJlPkiRv7xp/Ea7fHuxOVxFLb5ii4A6AACAPwAAAADacD0+LsigP9ByFT9j+h2/DjVrPtLWgT4AAAAAAAAAAJqXOz2uwaC6vcDbOkBaoDWZtXG6+vv8uQAAAAAAAAAAmlcDvAXSpLujN1A8v4+9PHcjDb3Sp549AACAPwAAgD/Nwvm84aS1utTpnbVTjH6wSc9cuZKWpjQAAIA/AACAPypXkT5sFPA+ndzwu9cEAb+wOJ0+WRQ8vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUIvBw/SUckCUhpRSlIwBbJRLy4wBdJRHQLp0ijbBXS11fZQoaAZoCWgPQwh39SoyuiZ0QJSGlFKUaBVNBQFoFkdAunSW4c3l0nV9lChoBmgJaA9DCPyMCwfCeXFAlIaUUpRoFUvFaBZHQLp0qOxjawl1fZQoaAZoCWgPQwgv3LkwEpJyQJSGlFKUaBVLxWgWR0C6dLSjYZl4dX2UKGgGaAloD0MIrwrUYnCBcUCUhpRSlGgVS85oFkdAunT1lFtsN3V9lChoBmgJaA9DCPtbAvDPc25AlIaUUpRoFUu4aBZHQLp1UUAksz51fZQoaAZoCWgPQwjBq+XOTP1vQJSGlFKUaBVLy2gWR0C6dXBUzbeudX2UKGgGaAloD0MIeNLCZZV2cUCUhpRSlGgVTScBaBZHQLp1ezt1IRR1fZQoaAZoCWgPQwhy3v/HSRByQJSGlFKUaBVLrmgWR0C6daeFHrhSdX2UKGgGaAloD0MIuD1BYrs/cECUhpRSlGgVS69oFkdAunW6tA9mpXV9lChoBmgJaA9DCNApyM+GCnBAlIaUUpRoFUvEaBZHQLp2FgR9PUN1fZQoaAZoCWgPQwhodt1bUQNyQJSGlFKUaBVLt2gWR0C6diAqiGnGdX2UKGgGaAloD0MIHsNjP8uVc0CUhpRSlGgVS8toFkdAunYioFV1fXV9lChoBmgJaA9DCDeOWItP0m9AlIaUUpRoFUu2aBZHQLp2MfReC051fZQoaAZoCWgPQwiqm4u/be5vQJSGlFKUaBVLzmgWR0C6dkdthuwYdX2UKGgGaAloD0MIYyXmWYmWc0CUhpRSlGgVS7BoFkdAunZ2qaPS2HV9lChoBmgJaA9DCK/S3XU26XFAlIaUUpRoFUu1aBZHQLp3CYukDZF1fZQoaAZoCWgPQwgtQUZAxURyQJSGlFKUaBVLxmgWR0C6dxEMb3oLdX2UKGgGaAloD0MIIPEr1jB8c0CUhpRSlGgVTRYBaBZHQLp3IcbR4Ql1fZQoaAZoCWgPQwhcV8wIr4JxQJSGlFKUaBVLs2gWR0C6d1eaScLCdX2UKGgGaAloD0MIuOaO/tcXc0CUhpRSlGgVS9hoFkdAundmxA0KqnV9lChoBmgJaA9DCGa9GMpJKnFAlIaUUpRoFUvQaBZHQLp3hWfK6nR1fZQoaAZoCWgPQwgX2GMi5dNxQJSGlFKUaBVLsWgWR0C6d7r3Cbc5dX2UKGgGaAloD0MIu2BwzZ3qcUCUhpRSlGgVS69oFkdAunfItBfKIXV9lChoBmgJaA9DCCFX6lnQTXFAlIaUUpRoFUvDaBZHQLp359/z8P51fZQoaAZoCWgPQwhb0eY4t8hwQJSGlFKUaBVLyWgWR0C6eB0kB0ZFdX2UKGgGaAloD0MIF0hQ/Bg/ZECUhpRSlGgVTegDaBZHQLp4LC9RJmN1fZQoaAZoCWgPQwhkV1pG6vtxQJSGlFKUaBVL4mgWR0C6eIEAHVwxdX2UKGgGaAloD0MIQ8ajVMJKX0CUhpRSlGgVTegDaBZHQLp4odfLLZB1fZQoaAZoCWgPQwivCz84H4FzQJSGlFKUaBVNJgFoFkdAuni29alk6XV9lChoBmgJaA9DCMB63LfaEnRAlIaUUpRoFUu9aBZHQLp4yFnZkCp1fZQoaAZoCWgPQwhJg9vaAppyQJSGlFKUaBVL52gWR0C6eQ6RdQfqdX2UKGgGaAloD0MIbMzriAPzcUCUhpRSlGgVS9RoFkdAunkmE384xXV9lChoBmgJaA9DCPflzHYFAGZAlIaUUpRoFU3oA2gWR0C6eTH6dlNDdX2UKGgGaAloD0MIknnkD8ZkcECUhpRSlGgVS7VoFkdAunk/sniNsHV9lChoBmgJaA9DCIcZGk/EmnFAlIaUUpRoFUvTaBZHQLqAPhDw6Qx1fZQoaAZoCWgPQwgfSUkPw6hxQJSGlFKUaBVLtmgWR0C6gFekYXO4dX2UKGgGaAloD0MITyLCv4jac0CUhpRSlGgVS8loFkdAuoBhxVAAyXV9lChoBmgJaA9DCBnG3SBa/3FAlIaUUpRoFU00AWgWR0C6gI/EOy3TdX2UKGgGaAloD0MIOV6B6EmFcUCUhpRSlGgVS7poFkdAuoCVNQCSzXV9lChoBmgJaA9DCLL0oQtqonBAlIaUUpRoFUvNaBZHQLqArDSw4bV1fZQoaAZoCWgPQwhu+rMfqSJxQJSGlFKUaBVL0WgWR0C6gQrVWjoIdX2UKGgGaAloD0MIxLKZQ9Iob0CUhpRSlGgVS8toFkdAuoEeAz544nV9lChoBmgJaA9DCDo978YCs3FAlIaUUpRoFUvMaBZHQLqBNT4L1Ep1fZQoaAZoCWgPQwgP0lPkEEpxQJSGlFKUaBVLxGgWR0C6gTjmKZUldX2UKGgGaAloD0MIWMfxQ+UyckCUhpRSlGgVS6hoFkdAuoFHtJFspHV9lChoBmgJaA9DCEf/y7VoxXJAlIaUUpRoFUuzaBZHQLqBcENvwVl1fZQoaAZoCWgPQwhIisiwitVtQJSGlFKUaBVLtmgWR0C6gYAZXMhYdX2UKGgGaAloD0MIX5oiwOn9b0CUhpRSlGgVS7loFkdAuoGePQv6CXV9lChoBmgJaA9DCFwExvrGdnJAlIaUUpRoFUvIaBZHQLqB4d5Y5kt1fZQoaAZoCWgPQwidnKG4o6JyQJSGlFKUaBVL7GgWR0C6gfdTkyULdX2UKGgGaAloD0MILxSwHQwfb0CUhpRSlGgVS8RoFkdAuoIQlZ5iVnV9lChoBmgJaA9DCIWwGktYMnFAlIaUUpRoFUvDaBZHQLqCKSL61st1fZQoaAZoCWgPQwjf/IaJhuBwQJSGlFKUaBVNBQFoFkdAuoJT4QBgeHV9lChoBmgJaA9DCK8nui48M3BAlIaUUpRoFUu6aBZHQLqCe7PY4AF1fZQoaAZoCWgPQwgdc56x75JyQJSGlFKUaBVNAgFoFkdAuoKJhLGrCHV9lChoBmgJaA9DCHNnJhgOG3FAlIaUUpRoFUvFaBZHQLqCogXuVop1fZQoaAZoCWgPQwhQw7ewLkpwQJSGlFKUaBVLvGgWR0C6gqkRnOB2dX2UKGgGaAloD0MI+dhdoKRRcUCUhpRSlGgVS8poFkdAuoLP/bTMJXV9lChoBmgJaA9DCCEf9GzWrnFAlIaUUpRoFUvZaBZHQLqC3L876pJ1fZQoaAZoCWgPQwhxdmuZTAJzQJSGlFKUaBVLuGgWR0C6gukK/mDEdX2UKGgGaAloD0MIeNDsujejcUCUhpRSlGgVS9toFkdAuoNOeEqUeXV9lChoBmgJaA9DCDwUBfpEpHBAlIaUUpRoFUu1aBZHQLqDW9AooeB1fZQoaAZoCWgPQwhg5dAi2+dxQJSGlFKUaBVLt2gWR0C6g47O7g89dX2UKGgGaAloD0MIn+i68EOBckCUhpRSlGgVS+BoFkdAuoOcKD0163V9lChoBmgJaA9DCAg6WtWSH2JAlIaUUpRoFU3oA2gWR0C6g6E12q1gdX2UKGgGaAloD0MId4cUA6QObkCUhpRSlGgVS8ZoFkdAuoPTn8sMAnV9lChoBmgJaA9DCMEeEylNz25AlIaUUpRoFUu/aBZHQLqEH2aDwph1fZQoaAZoCWgPQwiMuWsJObpxQJSGlFKUaBVLxWgWR0C6hCTSb6P9dX2UKGgGaAloD0MIipElc+yzckCUhpRSlGgVS9hoFkdAuoQjtlZownV9lChoBmgJaA9DCBVVv9K59nBAlIaUUpRoFUvXaBZHQLqEMg+hXbN1fZQoaAZoCWgPQwg3M/rRMDxwQJSGlFKUaBVLvWgWR0C6hFeKO1fFdX2UKGgGaAloD0MIirDh6RVKcUCUhpRSlGgVS8ZoFkdAuoR3f779AHV9lChoBmgJaA9DCK9BX3p7oHFAlIaUUpRoFUvdaBZHQLqEipdKNAF1fZQoaAZoCWgPQwhLBoAqrhNwQJSGlFKUaBVLq2gWR0C6hP7Cm/FjdX2UKGgGaAloD0MIpdjROFRIc0CUhpRSlGgVS85oFkdAuoUETbnHN3V9lChoBmgJaA9DCDTW/s72L3BAlIaUUpRoFUu3aBZHQLqFH6dDpkh1fZQoaAZoCWgPQwjk9PV8jZBxQJSGlFKUaBVL0WgWR0C6hUgCOmzjdX2UKGgGaAloD0MISb4SSAkoc0CUhpRSlGgVS8toFkdAuoWKZRbbDnV9lChoBmgJaA9DCMDpXbxfiXNAlIaUUpRoFU0WAWgWR0C6hZm0u14PdX2UKGgGaAloD0MI+u3rwLl5ckCUhpRSlGgVS7BoFkdAuoWlpblijXV9lChoBmgJaA9DCLABEeJKPXBAlIaUUpRoFUu8aBZHQLqFujxTbWV1fZQoaAZoCWgPQwjnjCjtTTVwQJSGlFKUaBVLvWgWR0C6hb+ws5GSdX2UKGgGaAloD0MIQfUPIpmlc0CUhpRSlGgVS7xoFkdAuoYtxiobXHV9lChoBmgJaA9DCAcMkj5tn3FAlIaUUpRoFUvgaBZHQLqGS9hqj8F1fZQoaAZoCWgPQwjbNLbXAsRxQJSGlFKUaBVL4WgWR0C6hnUrK/21dX2UKGgGaAloD0MIHCeFeY/rZkCUhpRSlGgVTegDaBZHQLqGdM98qnZ1fZQoaAZoCWgPQwgk7xzKUPtNQJSGlFKUaBVLf2gWR0C6hs5VS4vwdX2UKGgGaAloD0MIbMuAs9TUcECUhpRSlGgVS89oFkdAuobkHgP3BnV9lChoBmgJaA9DCK6f/rNmwnJAlIaUUpRoFUvVaBZHQLqG7UiILw51fZQoaAZoCWgPQwii725lCcpuQJSGlFKUaBVLwGgWR0C6hwXB1s+FdX2UKGgGaAloD0MIayxhbcw3c0CUhpRSlGgVS+poFkdAuodErqdH2HV9lChoBmgJaA9DCHhflQvVvHBAlIaUUpRoFUvJaBZHQLqHZsPatcR1fZQoaAZoCWgPQwizeofbIRhxQJSGlFKUaBVLxGgWR0C6h5HOryUcdX2UKGgGaAloD0MIlGjJ4+mrcUCUhpRSlGgVS69oFkdAuogujh1klXV9lChoBmgJaA9DCKg4DrzaaHFAlIaUUpRoFUvGaBZHQLqIQEpAlfJ1fZQoaAZoCWgPQwgF3zR9thVzQJSGlFKUaBVL7GgWR0C6iI+NPxhEdX2UKGgGaAloD0MIhpDz/n9PcUCUhpRSlGgVS9ZoFkdAuoiga/ATI3V9lChoBmgJaA9DCFM+BFUj6m9AlIaUUpRoFUuxaBZHQLqIpDPWxyJ1fZQoaAZoCWgPQwhlqIqp9GVxQJSGlFKUaBVLu2gWR0C6iNhM8HObdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 492,
79
+ "n_steps": 1024,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2_gamma_99/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cde53af9637234cd5bceecc0fea62a83393a0b4c5176221d41eae50470889410
3
+ size 84893
ppo-LunarLander-v2_gamma_99/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b80ffab383dc3ae4ad2387fc0e04326645ba570ac22ac0b11e67e486834a980b
3
+ size 43201
ppo-LunarLander-v2_gamma_99/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2_gamma_99/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8020ece7dfeb8e09eff92ca89f9a5e9e52a10b4c51818802e8e9dc39dbdd252f
3
- size 186627
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79453164dfe8a43f2890705be221206c25d45486dfe20c20ec2a230abda0ac4f
3
+ size 185867
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 263.46973199674494, "std_reward": 44.34004485371763, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T15:44:15.103287"}
 
1
+ {"mean_reward": 260.6962097192392, "std_reward": 50.264218972280574, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T16:52:16.664280"}