robinsmits's picture
Update README.md
d21b488 verified
metadata
datasets:
  - BramVanroy/ultra_feedback_dutch_cleaned
language:
  - nl
base_model:
  - robinsmits/Schaapje-2B-Chat-SFT-V1.0
pipeline_tag: text-generation
library_name: transformers
tags:
  - granite
  - granite 3.0
  - schaapje
  - trl
  - sft
  - dpo
inference: false
license: apache-2.0

Schaapje logo

Schaapje-2B-Chat-V1.0

Model description

This is the DPO aligned model based on the SFT trained model Schaapje-2B-Chat-SFT-V1.0.

General Dutch Chat and/or Instruction following works quitte well with this model.

Model usage

A basic example of how to use this DPO aligned model for Chat or Instruction following.

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = 'cuda'
model_name = 'robinsmits/Schaapje-2B-Chat-V1.0'

model = AutoModelForCausalLM.from_pretrained(model_name, 
                                             device_map = "auto", 
                                             torch_dtype = torch.bfloat16)

tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [{"role": "user", "content": "Hoi hoe gaat het ermee?"}]

chat = tokenizer.apply_chat_template(messages, 
                                     tokenize = False, 
                                     add_generation_prompt = True)

input_tokens = tokenizer(chat, return_tensors = "pt").to('cuda')

output = model.generate(**input_tokens, 
                        max_new_tokens = 512,
                        do_sample = True)

output = tokenizer.decode(output[0], skip_special_tokens = False)
print(output)

Intended uses & limitations

As with all LLM's this model can also experience bias and hallucinations. Regardless of how you use this model always perform the necessary testing and validation.

Datasets and Licenses

The following dataset was used for DPO alignment:

Model Training

The notebook used to train this DPO aligned model is available at the following link: Schaapje-2B-Chat-DPO-V1.0