bart-abs-1409-1800-lr-3e-05-bs-4-maxep-6

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3829
  • Rouge/rouge1: 0.3549
  • Rouge/rouge2: 0.1363
  • Rouge/rougel: 0.3021
  • Rouge/rougelsum: 0.3032
  • Bertscore/bertscore-precision: 0.9037
  • Bertscore/bertscore-recall: 0.8687
  • Bertscore/bertscore-f1: 0.8857
  • Meteor: 0.2545
  • Gen Len: 25.5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
1.7439 1.0 13 2.8127 0.2992 0.0924 0.2491 0.2492 0.8984 0.8552 0.876 0.2093 22.5
1.263 2.0 26 2.9358 0.3773 0.1311 0.3058 0.306 0.9115 0.8688 0.8895 0.2469 24.9
0.8455 3.0 39 3.0548 0.4307 0.1554 0.3399 0.3393 0.9029 0.8741 0.8881 0.3255 28.1
0.6581 4.0 52 3.2153 0.3986 0.1569 0.3487 0.3471 0.9111 0.8757 0.8929 0.3092 25.8
0.4915 5.0 65 3.2936 0.4004 0.1256 0.3204 0.3222 0.9035 0.8738 0.8883 0.2892 26.0
0.393 6.0 78 3.3829 0.3549 0.1363 0.3021 0.3032 0.9037 0.8687 0.8857 0.2545 25.5

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
306M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for roequitz/bart-abs-1409-1800-lr-3e-05-bs-4-maxep-6

Finetuned
(43)
this model