roequitz's picture
End of training
460433d verified
metadata
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
  - generated_from_trainer
model-index:
  - name: bart-abs-1509-0313-lr-3e-06-bs-4-maxep-10
    results: []

bart-abs-1509-0313-lr-3e-06-bs-4-maxep-10

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 6.5518
  • Rouge/rouge1: 0.3111
  • Rouge/rouge2: 0.0793
  • Rouge/rougel: 0.2212
  • Rouge/rougelsum: 0.2213
  • Bertscore/bertscore-precision: 0.8659
  • Bertscore/bertscore-recall: 0.864
  • Bertscore/bertscore-f1: 0.8649
  • Meteor: 0.228
  • Gen Len: 36.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
0.4698 1.0 217 6.0332 0.2584 0.0526 0.1868 0.1869 0.8466 0.8559 0.8512 0.2654 55.0
0.4866 2.0 434 6.1644 0.3111 0.0793 0.2212 0.2213 0.8659 0.864 0.8649 0.228 36.0
0.4497 3.0 651 6.2268 0.3111 0.0793 0.2212 0.2213 0.8659 0.864 0.8649 0.228 36.0
0.4248 4.0 868 6.3031 0.3111 0.0793 0.2212 0.2213 0.8659 0.864 0.8649 0.228 36.0
0.4054 5.0 1085 6.4024 0.3111 0.0793 0.2212 0.2213 0.8659 0.864 0.8649 0.228 36.0
0.3937 6.0 1302 6.4675 0.3111 0.0793 0.2212 0.2213 0.8659 0.864 0.8649 0.228 36.0
0.3833 7.0 1519 6.5040 0.3111 0.0793 0.2212 0.2213 0.8659 0.864 0.8649 0.228 36.0
0.3761 8.0 1736 6.5270 0.3111 0.0793 0.2212 0.2213 0.8659 0.864 0.8649 0.228 36.0
0.374 9.0 1953 6.5454 0.3111 0.0793 0.2212 0.2213 0.8659 0.864 0.8649 0.228 36.0
0.3686 10.0 2170 6.5518 0.3111 0.0793 0.2212 0.2213 0.8659 0.864 0.8649 0.228 36.0

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1