|
--- |
|
language: |
|
- hi |
|
- en |
|
tags: |
|
- es |
|
- en |
|
- codemix |
|
license: "apache-2.0" |
|
datasets: |
|
- SAIL 2017 |
|
metrics: |
|
- fscore |
|
- accuracy |
|
- precision |
|
- recall |
|
--- |
|
|
|
# BERT codemixed base model for Hinglish (cased) |
|
|
|
This model was built using [lingualytics](https://github.com/lingualytics/py-lingualytics), an open-source library that supports code-mixed analytics. |
|
|
|
## Model description |
|
|
|
Input for the model: Any codemixed Hinglish text |
|
Output for the model: Sentiment. (0 - Negative, 1 - Neutral, 2 - Positive) |
|
|
|
I took a bert-base-multilingual-cased model from Huggingface and finetuned it on [SAIL 2017](http://www.dasdipankar.com/SAILCodeMixed.html) dataset. |
|
|
|
## Eval results |
|
|
|
Performance of this model on the dataset |
|
|
|
| metric | score | |
|
|------------|----------| |
|
| acc | 0.55873 | |
|
| f1 | 0.558369 | |
|
| acc_and_f1 | 0.558549 | |
|
| precision | 0.558075 | |
|
| recall | 0.55873 | |
|
|
|
#### How to use |
|
|
|
Here is how to use this model to get the features of a given text in *PyTorch*: |
|
|
|
```python |
|
# You can include sample code which will be formatted |
|
from transformers import BertTokenizer, BertModelForSequenceClassification |
|
tokenizer = AutoTokenizer.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') |
|
model = AutoModelForSequenceClassification.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') |
|
text = "Replace me by any text you'd like." |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
``` |
|
|
|
and in *TensorFlow*: |
|
|
|
```python |
|
from transformers import BertTokenizer, TFBertModel |
|
tokenizer = BertTokenizer.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') |
|
model = TFBertModel.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased') |
|
text = "Replace me by any text you'd like." |
|
encoded_input = tokenizer(text, return_tensors='tf') |
|
output = model(encoded_input) |
|
``` |
|
|
|
#### Preprocessing |
|
|
|
Followed standard preprocessing techniques: |
|
- removed digits |
|
- removed punctuation |
|
- removed stopwords |
|
- removed excess whitespace |
|
Here's the snippet |
|
|
|
```python |
|
from pathlib import Path |
|
import pandas as pd |
|
from lingualytics.preprocessing import remove_lessthan, remove_punctuation, remove_stopwords |
|
from lingualytics.stopwords import hi_stopwords,en_stopwords |
|
from texthero.preprocessing import remove_digits, remove_whitespace |
|
|
|
root = Path('<path-to-data>') |
|
|
|
for file in 'test','train','validation': |
|
tochange = root / f'{file}.txt' |
|
df = pd.read_csv(tochange,header=None,sep='\t',names=['text','label']) |
|
df['text'] = df['text'].pipe(remove_digits) \ |
|
.pipe(remove_punctuation) \ |
|
.pipe(remove_stopwords,stopwords=en_stopwords.union(hi_stopwords)) \ |
|
.pipe(remove_whitespace) |
|
df.to_csv(tochange,index=None,header=None,sep='\t') |
|
``` |
|
|
|
## Training data |
|
|
|
The dataset and annotations are not good, but this is the best dataset I could find. I am working on procuring my own dataset and will try to come up with a better model! |
|
|
|
## Training procedure |
|
|
|
I trained on the dataset on the [bert-base-multilingual-cased model](https://huggingface.co/bert-base-multilingual-cased). |
|
|