sft-llava-1.5-7b_lora

This model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9404
  • Bleu: 0.1802
  • Rouge1: 0.4861
  • Rouge2: 0.1709
  • Rougel: 0.3580
  • Bertscore Precision: 0.6578
  • Bertscore Recall: 0.7479
  • Bertscore F1: 0.6999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Bleu Rouge1 Rouge2 Rougel Bertscore Precision Bertscore Recall Bertscore F1
5.7514 0.3101 200 5.6831 0.0772 0.2028 0.0717 0.1778 0.6381 0.7437 0.6869
2.9737 0.6202 400 2.9242 0.1580 0.4319 0.1445 0.3306 0.6578 0.7479 0.6999
2.6756 0.9302 600 2.6594 0.1839 0.4859 0.1759 0.3680 0.6381 0.7437 0.6869
2.18 1.2403 800 2.5783 0.1754 0.4864 0.1754 0.3775 0.6578 0.7479 0.6999
2.0957 1.5504 1000 2.5019 0.1849 0.4877 0.1850 0.3801 0.6578 0.7479 0.6999
2.0109 1.8605 1200 2.4393 0.1879 0.4911 0.1840 0.3859 0.6578 0.7479 0.6999
0.7656 2.1705 1400 2.9613 0.1808 0.4810 0.1719 0.3644 0.6578 0.7479 0.6999
0.7271 2.4806 1600 3.0544 0.1817 0.4795 0.1695 0.3629 0.6578 0.7479 0.6999
0.6746 2.7907 1800 3.0377 0.1754 0.4765 0.1639 0.3508 0.6578 0.7479 0.6999
0.1183 3.1008 2000 3.6408 0.1801 0.4821 0.1710 0.3636 0.6578 0.7479 0.6999
0.1123 3.4109 2200 3.6913 0.1765 0.4903 0.1712 0.3629 0.6578 0.7479 0.6999
0.1051 3.7209 2400 3.7181 0.1766 0.4884 0.1701 0.3618 0.6578 0.7479 0.6999
0.046 4.0310 2600 3.7719 0.1781 0.4849 0.1711 0.3598 0.6578 0.7479 0.6999
0.0444 4.3411 2800 3.9170 0.1801 0.4852 0.1719 0.3595 0.6578 0.7479 0.6999
0.0452 4.6512 3000 3.9377 0.1808 0.4872 0.1714 0.3604 0.6578 0.7479 0.6999
0.0449 4.9612 3200 3.9404 0.1802 0.4861 0.1709 0.3580 0.6578 0.7479 0.6999

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
14
Safetensors
Model size
7.06B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for rohitsaxena/sft-llava-1.5-7b_lora

Finetuned
(47)
this model