Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +25 -25
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 278.36 +/- 18.18
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f13a4ce83a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13a4ce8430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13a4ce84c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13a4ce8550>", "_build": "<function ActorCriticPolicy._build at 0x7f13a4ce85e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f13a4ce8670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f13a4ce8700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13a4ce8790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f13a4ce8820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13a4ce88b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13a4ce8940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13a4ce89d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f13a4ce4e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689050504332737274, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAJrvFj446fq7OT6EPHe8zbqT01C947asuwAAgD8AAIA/Zmc8vZUaqT8oreS+MO0Ev9o0Q7prWmC9AAAAAAAAAABN97A9XGNauknPLDZ9mcQ06Cl6uLWb9LYAAIA/AACAP2YfiD3T1ns/xfVnPet1RL84Xj89A+nnvAAAAAAAAAAAmkX7O4Vz/rmLAaC7URWcuSkMdLpzr8E6AAAAAAAAgD9Anwi+H13xuz5ihb0peB68PedPPdMlBT0AAIA/AACAP5o9OzymQC0/BVIjPdBJY79FkBE9y0ZRPQAAAAAAAAAAALHPPHNERz8MThw9hjhhv3T3az0cb0A8AAAAAAAAAAA6bCM+tv59vF4yUjv5I965gdzcvd5sxroAAIA/AACAP2BXHj5Dq0C80rZFuufPkjhezLK9lnyGOQAAgD8AAIA/WunIPcOpNLp+47w7eX/YNE3pBrpu7MkzAAAAAAAAgD/NsFc9CmdGuQW/gbgzSscxy9uKuzd1mzcAAIA/AACAP016Uj0URKu6xpkKvtNbkDtfH7e5qtCRPAAAgD8AAIA/gBx1vuIkGz/4XXi7Mf4Rv+5nmb71Sxk+AAAAAAAAAABa+ty99vR9uthbRTvdYZU54Bm+uuhHKToAAIA/AAAAAACgnzx8NoU+F2GivRy5FL/DOoA7agF3vQAAAAAAAAAAjbEZPo90L7yqp7w7jwg2uryYmb1WGxa7AACAPwAAgD86SDK+aNiiPkK/zLvh+fS+g9dAvmjegj0AAAAAAAAAAGa6bbxI65i6zSj+PHA/JbYnQq+6zQwatQAAgD8AAIA/syIrvgPjV7xszA87gU8qOTkBwz1pOju6AACAPwAAgD+Aa6W9hQPVuUpXzz2JTii5wU2TuR42JrgAAAAAAACAP808K7spTVM93hTOPS+3gr6PP6M8riM8PQAAAAAAAAAAs1aEvja3nD9fshu/ie0HvxzNtb7G7Iu+AAAAAAAAAADa77C9FKTSunGugT1j3hI9FFb3u+1d+z0AAIA/AACAP40SuD1cUy66fX3pur9VVbYNQj46zSoIOgAAAAAAAIA/UzR3PkvkCz/1CMG9y7Mpv+4pOj72rd29AAAAAAAAAACasaC70mv3u05Vhjy8LKQ8w0VSPZayiL0AAIA/AACAPw3Esb32lCy6i8Rfuq9m4baF4PW4BnSIOAAAgD8AAAAAALqaPEPRBbxhNYm9CbttvpJmAzvDy02/AACAPwAAgD+aOM489vRZumUSxLo1RP64vSQoOq7H7TkAAIA/AACAP5pJKb4hO4u8PpxCOg0nnThwDfI9/aiGuQAAgD8AAIA/MyuhPfZ4CbrIPPe3srEBsx+YLzt4/BA3AACAPwAAgD96SYQ+FU3MPgH8vb6BKha//vsNPUL7+r0AAAAAAAAAAAAfsT3pPxw9QE7kveCpZL5aXEm9YfC/vQAAAAAAAAAAuvwGvottLD+uu9m98vI8v0L5Ib4wlfM8AAAAAAAAAADzCDG+gaWZvEaxXbxwvvi6mKMMPqfexDsAAIA/AACAP8Cflr0f3bO5e88dPQwfM7H0Uo07StrYswAAgD8AAIA/QBDQvRSO1rieXbi5W4s8tYACmTudOt04AACAPwAAAABmhm09w8F/uhhOXr0g91E8B11GO4YlNz0AAIA/AACAPzPtJL2eqcw91tbMvAbhVL6RJIK9Wx1+PQAAAAAAAAAAKgyFvvA+hT41yaM+WgcLv1cu9zxaqvI9AAAAAAAAAACad8M8XKNruhomWTNN+asvJtNXuu08yrMAAIA/AACAPzNb+rsbpYW8xdVOPd6Ccb0M+5k8arVfPQAAgD8AAIA/s+BsPSuolj+cGhQ+wEIuv/42mD36cLI8AAAAAAAAAAAAhKa7tBZLP/Wt3rys9Xe/PC0+PKKlfT0AAAAAAAAAAMClM74PlFy8Rl0tu0Y/SLn9e8Q91ftcOgAAgD8AAIA/TRQXvWynmLsT6/c9DoaUvNWFkDst3+q9AACAPwAAgD8tcig+tuQuvI0hCbt6ZA05hd2cvVfULzoAAIA/AACAPxozdD24HuW3TbHTvFwjdrIXpqa70f9HswAAgD8AAIA/mlkXOrrRsz/yv7Q77KzjvVdaELvFOi48AAAAAAAAAAAAsA87eLq9P4FAsLpbDjK+0dnzu3nSFz0AAAAAAAAAAJqZubrsiZm50FlducIEq7RvwpA78vOBOAAAgD8AAAAAQIoJPtpUVz+Rfkw+e80hv8iRYT4RKUw5AAAAAAAAAAAzu+I9RqahPtKWsb0Rfgq/yVVbPSquA74AAAAAAAAAAAa6fT5d/AA/HgCGvWAjFr8H57o+G7YCvgAAAAAAAAAATaPzvZ59Qz+uAdi91P4dv4VHJ76fPpS8AAAAAAAAAACNUAK+hCOKP9E/O75mqDa/v6ErvoUPKL0AAAAAAAAAAE2/H71xulQ8+rRUPnNRKb4lQyY+onqVvgAAAAAAAIA/GlhFvcPBXrrtBSY57a2PNJIip7hhf0C4AACAPwAAgD/AVhg+UUu1PUtPUL7672a+HYlvPO3ear0AAAAAAAAAAMaFHr6PayC81xICu08h3rh4JYM9PhYkOgAAgD8AAIA/8zMXPgMrarx7yRQ8CQ2SPIwgkT3dKGu9AACAPwAAgD+NlhY+nEsLvB5+4bpyArY480tfvQ7IEToAAIA/AACAP83wGT6px028+ugWO+4kSbn3aMC9DklOugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEeD+BH09SMAWyUS72MAXSUR0Cuc+i/fwZwdX2UKGgGR0Bz3C+QEIPcaAdLv2gIR0CudCL56+nJdX2UKGgGR0BxLKOjqOcUaAdLqWgIR0CudCEzO5avdX2UKGgGR0Bw8RLUTcqOaAdLn2gIR0CudGp2MbWFdX2UKGgGR0ByGTgCOmzjaAdL12gIR0CudIcfFJg9dX2UKGgGR0Bx6f9XLeQ/aAdLnWgIR0CudIY77sOYdX2UKGgGR0BvfZOafBepaAdLl2gIR0CudMaVdHDrdX2UKGgGR0BzQpJOFg2IaAdNAAFoCEdArnUt6ol2NnV9lChoBkdAcM73gk1MumgHS8RoCEdArnU+EIw/PnV9lChoBkdAcXVO/+Kjz2gHS6xoCEdArnVtbgTAWXV9lChoBkdAcSnSR8twrGgHTRkBaAhHQK51ebI91U51fZQoaAZHQHCYMxj8UEhoB0vWaAhHQK51r1RLsa91fZQoaAZHQHKof6wdKdxoB0vZaAhHQK51wFyq+8J1fZQoaAZHQHLb8IqslsxoB0uxaAhHQK517xZMcp91fZQoaAZHQHI/QmE4//xoB0vMaAhHQK5162606YF1fZQoaAZHQHEfS+Yc/+toB0vIaAhHQK516gJ1JUZ1fZQoaAZHQGVv3Xyy2QZoB03oA2gIR0Cudj+HaewtdX2UKGgGR0BzQh96Tnq3aAdL+mgIR0Cudoo+wC8wdX2UKGgGR0BwJyAG0NSZaAdLomgIR0Cuds36hxo7dX2UKGgGR0Bx85ymygPFaAdLyGgIR0CudwRR2r4ndX2UKGgGR0BwtG7kGRmsaAdLnGgIR0CudyoP07KadX2UKGgGR0BzBqzgMtsfaAdL2mgIR0Cud1SX2M86dX2UKGgGR0BwJhpGnXNDaAdLyGgIR0Cud6r3Cbc5dX2UKGgGR0BxzJV+7UXpaAdL+WgIR0CueCKs2eg+dX2UKGgGR0BwdYOiFj/daAdLoWgIR0CueFKU/wAmdX2UKGgGR0Bw42w4bS7YaAdLymgIR0CueJdfkWAPdX2UKGgGR0ByH5XzUZvUaAdLi2gIR0CueLAfU4JedX2UKGgGR0ByReCI1tO3aAdLjmgIR0CueYX1rZandX2UKGgGR0Byl+WfK6nSaAdL1GgIR0CuekQpF1B/dX2UKGgGR0Bxzw30f5k9aAdLx2gIR0CuekM10knkdX2UKGgGR0BxwIsrd30PaAdL4WgIR0CuekKneiztdX2UKGgGR0BwiQFNcnmaaAdLpWgIR0CuelIMKCxvdX2UKGgGR0By9oILPUrkaAdLr2gIR0CuelCMYMvzdX2UKGgGR0BxjjkJa7mMaAdL/mgIR0CuemKEvkBCdX2UKGgGR0BvC3c32mHhaAdLsWgIR0Cuen9mg8KYdX2UKGgGR0BnORa/yoXLaAdN6ANoCEdArnp5+jM3ZXV9lChoBkdAco7OtGNJe2gHS9doCEdArnqXsAvL5nV9lChoBkdAcNVBu4wyqWgHS51oCEdArnsH9UCJXXV9lChoBkdAMgFoL5RCQmgHS2hoCEdArnv2V7hNunV9lChoBkdAcUupX6qKg2gHS6BoCEdArnwnY6GQCHV9lChoBkdAYH8tITXarWgHTegDaAhHQK58J6UJOWV1fZQoaAZHQHFCvmYBvJloB0unaAhHQK58M4vvjOt1fZQoaAZHQHAKHWnTAnFoB0ubaAhHQK58MZDzAet1fZQoaAZHQHHhXrhR64VoB0vnaAhHQK58br2QGOd1fZQoaAZHQGTglV1fVqhoB03oA2gIR0CufJkRSP2gdX2UKGgGR0ByMwpDu0CzaAdLvmgIR0CufLMhX8wYdX2UKGgGR0BylNIMBp6AaAdLtGgIR0CufS7pNbkfdX2UKGgGR0B0kYZhrnDBaAdLx2gIR0CufSqzAvcrdX2UKGgGR0ByX93s5XEJaAdL4mgIR0CufUcMd92HdX2UKGgGR0BxQWLYPGyYaAdLumgIR0CufWCNS619dX2UKGgGR0ByXaAlOXVtaAdLvmgIR0CufbI99tuUdX2UKGgGR0Bzm2pYLb5/aAdL+2gIR0CufbzaK1ohdX2UKGgGR0Bx+xDE3sHCaAdLsGgIR0CufhuHvc8DdX2UKGgGR0Bw74lZ5iVjaAdLv2gIR0CufnByKekIdX2UKGgGR0B0EaoJiRW+aAdLtGgIR0CufqU+TvAodX2UKGgGR0BxquYqoZQ6aAdLxmgIR0CufqMn7YTTdX2UKGgGR0Bv/aufVZs9aAdLvWgIR0CufuUuL740dX2UKGgGR0ByrUgZCOWCaAdLpmgIR0CufvcawUxmdX2UKGgGR0Bx7d6QeV9naAdLyGgIR0Cufx+DWbw0dX2UKGgGR0ByefRArxy5aAdL0WgIR0Cufx1+7UXpdX2UKGgGR0ByysLUkOZtaAdLyWgIR0Cufypo0ygxdX2UKGgGR0ByoSRdQfp2aAdLz2gIR0Cuf9CV0Lc9dX2UKGgGR0ByQUSGrS3LaAdLuGgIR0Cuf93H7xd6dX2UKGgGR0ByWZXxOLzgaAdLxGgIR0CugA0sOG0vdX2UKGgGR0BxKRjvuw5eaAdLwWgIR0CugFhRZU1idX2UKGgGR0Bwf76uW8h+aAdLtGgIR0CugIWll9SddX2UKGgGR0Bu/Lbah6BzaAdLsWgIR0CugLRFqi48dX2UKGgGR0ByWxK7I1cdaAdL3GgIR0CugSNx+8XfdX2UKGgGR0BwEQI5YHPeaAdLsWgIR0CugTJVKf4AdX2UKGgGR0BxQDZpSJj2aAdLo2gIR0CugVwpvxYrdX2UKGgGR0BxCaXMQmNSaAdLo2gIR0CugXSsKb8WdX2UKGgGR0Bz/paFEiMYaAdL4mgIR0CugfB06o2odX2UKGgGR0BywZyEL6UJaAdLz2gIR0Cugir8JlasdX2UKGgGR0BzEDH7xd6caAdL62gIR0CugirBTGYKdX2UKGgGR0BhJ10xM36zaAdN6ANoCEdAroIqlUIcBHV9lChoBkdAc2AFA3T/hmgHS/RoCEdAroJfpIMBqHV9lChoBkdAcUpR/ViF02gHS8NoCEdAroKf3evZAnV9lChoBkdAcABQ5myxA2gHS55oCEdAroK+cBltj3V9lChoBkdAcOLd07r9l2gHS7NoCEdAroMdfiPyTnV9lChoBkdAb5mRGtp22WgHS6loCEdAroNEz9CNTHV9lChoBkdAXTnSOR1YAGgHTegDaAhHQK6DfMIu5Bl1fZQoaAZHQHCtb5dnkDJoB0uvaAhHQK6Dlq1w5vN1fZQoaAZHQHCYFdxAB1doB0uZaAhHQK6ECJLuhK11fZQoaAZHQHIMo1UEPlNoB0u5aAhHQK6EG1NQCS11fZQoaAZHQHBpMfvF3pxoB0u9aAhHQK6EhTefqX51fZQoaAZHQHFOUrCm/FloB0uOaAhHQK6EoSt/4It1fZQoaAZHQHI4ReXzDoBoB0uJaAhHQK6E7Wsijcp1fZQoaAZHQG6fTB68g6loB0utaAhHQK6FRvGZNPB1fZQoaAZHQHEx8zyjHn5oB0u4aAhHQK6F4u01IiF1fZQoaAZHQG4fMh5gPVdoB0u3aAhHQK6F32MbWEt1fZQoaAZHQHFwsMRYigVoB0vUaAhHQK6F3a2WpqB1fZQoaAZHQHDeQ6p5u65oB0u8aAhHQK6GJKTSssB1fZQoaAZHQHMHHrIHTqloB00XAWgIR0CuhlCaAnUldX2UKGgGR0BwKsnH/95yaAdLlmgIR0CuhmPtUn5SdX2UKGgGR0By8TOzIFNdaAdL12gIR0CuhnuhkAggdX2UKGgGR0Bye+Tr3TNMaAdL52gIR0CuhrfRu0kXdX2UKGgGR0Bx3aVpsXSCaAdLmGgIR0CuhrV3dKukdX2UKGgGR0Bw1XR0EHMVaAdLwWgIR0Cuh2qtPpIMdX2UKGgGR0Bis9OTJQtSaAdN6ANoCEdArog3WjGkvnV9lChoBkdAcmv779AHFGgHS89oCEdArohtwFTvRnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 230, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d69e2f250>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d69e2f2e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d69e2f370>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d69e2f400>", "_build": "<function ActorCriticPolicy._build at 0x7f9d69e2f490>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d69e2f520>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9d69e2f5b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d69e2f640>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d69e2f6d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d69e2f760>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d69e2f7f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d69e2f880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9d79decac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5111808, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689054959226809852, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAMCQlD0K9z25XsFGNQ+25jDVcQA8fThRtAAAgD8AAIA/ZpLVPO6kpj4+e0G9sv1Tv01Y5DxxVhu8AAAAAAAAAACayV49V5oVPpbSAL4AweK+9QOXvIa2qb0AAAAAAAAAAK2lYT4LKS0/lySRPCkaO7+K8YU+zLUjvgAAAAAAAAAAWifjPfb4QLpOJC++3owivvYUjbzhfDU/AACAPwAAAABmPpU9KXhcuh5llTiaWiUyl1xmOpD0rLcAAIA/AACAPzO0Gz0pUGm6kYW/tpOosrEmSYs7QKbhNQAAgD8AAIA/Mx8bvrRsKz8+XoC7JCkzv4gQSb6mfbw8AAAAAAAAAABmCs08UpjGufqSZrdmsP6ymrYIPAt6iDYAAIA/AACAP/quCr64FM67hYkBO6uh3zj3OjA9Lq8uugAAgD8AAIA/M8tfPVsIoz+NNbM+hugbvzH8RT1qPF0+AAAAAAAAAAAzuI09zHl3PqYl5Luq4Q6/9RYzPTmdEL0AAAAAAAAAAGY04jxkb78/s+ONPjchgz7V4fy8TfZYvQAAAAAAAAAApkMIvnArhz/8fEi+3eRZv7VyHL7Du8C7AAAAAAAAAABmj6A9qUkrPfB8j74iKpO+58WXvVaEgr0AAAAAAAAAADOk5jwK/yg8tI2ZvbvXhL76idG8FCkRvAAAAAAAAAAAszY1vZT7zjs2rMM+WwVFvs7TibwS3F8+AAAAAAAAAAAaot+9/hypP1wTl74KDxS/YnxFvt2D8r0AAAAAAAAAAABwjrvh0Kq6tkzNswIZQK9GoLA5PDDCMwAAgD8AAIA/zWDfPHvajLpuc12zmu0urPRlwzrFALwzAACAPwAAgD8zXbS88P4jP0CBjrywE12/HK05vQ6ps7wAAAAAAAAAANo+6j29Dhc/iq+KPYwXRL93cjw+mmdxvAAAAAAAAAAAM1KAPIdMtT+GgsE+ymSvPFUOvbuO1gM9AAAAAAAAAACmkZy9w6V6ulltFrgLSQiz0/T7uhToLzcAAIA/AACAPyZ0tj1OOoA9WpMevroSA7+u0ME83m5XvQAAAAAAAAAA2uH5vVMUoj9uddW+dQEYvxTzUL57qv+9AAAAAAAAAACThgI+0kCWPpMTEr3xju2+14bpPddHKrwAAAAAAAAAAJr0ljyuTrk/Gke1PnlCjD6oepu78VIxPQAAAAAAAAAAxnYWvo/hIrzYcmW8FpLYunQAhT1Vm7M7AACAPwAAgD/N2Um9FJqUupoElbf10aGyOrbnOilSrDYAAIA/AACAP41g672JwFI9YY6VPhJNbr6PuYS8Qg8ePgAAAAAAAAAAhkZBvlfhfz/dztm+zyc/v7yvqb6AYA6+AAAAAAAAAAAAcxe9kp/4PJIAnDzQD26+SwqUvCskMDwAAAAAAAAAADOrZz64x6w/P1EpP3UsAL+ezMM+yum9PgAAAAAAAAAAZrbVukhXrrpiThw9u+4sM0l7gLr9nU4zAACAPwAAgD9Azok98VywP0urgj4s58e+oqWaPUaHdz0AAAAAAAAAAGZDhLwfaYY6CJrrPIrFpTI6/ru7wla+sAAAgD8AAIA/M+KPPWGGeD85+ok+Vz11v6ky6j3eauw9AAAAAAAAAAD6Gx0+Nqs8vC/CtzrVMs64fyatvfA49rkAAIA/AACAP7MbD72uQaW6OdmatOQpvq6CPKq6JXyEMwAAgD8AAIA/mtyyvAVBpbtuBFg9ErKdPLDkFr2/T4U9AACAPwAAgD9mUCK9w+U3ui+iObN+ntIvcElyO3BAvjMAAIA/AACAPw2QhD3hZIC6VwI6viFa6Ds9ZmI7ysrVvAAAAAAAAIA/zUABvO/NtT8JkUy/ZoHWPlHiFTyGWTk+AAAAAAAAAABaAik+rQYYP3Lzej0pwze/P96PPj2Osr0AAAAAAAAAAEYyZD7eVlQ/pa5bPQTmNb9nTa4+Ji3tvQAAAAAAAAAAZv8HvTNBuj/vccq+FBMcPkSXijtTepC9AAAAAAAAAABGOWg+RETXPppkN77jhw2/CSswPhhiL74AAAAAAAAAAGYuoTyuF6o/Jh7FPYbn3L55OEY9fjiOPQAAAAAAAAAAJsKPPTKFmj/mvjc+goM/v+2cqj3H+JA8AAAAAAAAAAAAS8q9tDvTPkyLSjtE7Di/GL0gvgYvED0AAAAAAAAAAHMkPz5La/0+WfMDvYoJJ7/G1I8+Li+uvQAAAAAAAAAAs8shPej/lz/r1Gk9QdJXvyKyCz2wsNc9AAAAAAAAAADApT2+eeJgPir6Sj6HpQq/uGHDvRsMUz0AAAAAAAAAAGqEer5+sYg+2zblPsTa/r6RV7u8esphPgAAAAAAAAAAE44yvoIjBT6D72Q+P2GavsxEGb7tpz8+AAAAAAAAAADNx7A8FBSEujvZzzM51tcvasjgN3K0prMAAIA/AACAP9ow6r0UNqs+/8LEPNmKL78C5ei9JbDlvAAAAAAAAAAAzfgEvD1mPjomkS41t7cOMLUGPrv2tGO0AACAPwAAgD9zfBy+nMhOvCsEnjokBL4472e1PasC1LkAAIA/AACAP/Nkd74B/oU/l1McvwMuO7+8b8a+DsQ4vgAAAAAAAAAAgIyavYVj5Lk4AQM4AgWzMj7ldTou+Rq3AACAPwAAgD9Gr3a+xNNWPy552b4sUT+/g4fJvmx+ub0AAAAAAAAAAJqJrzq0gZw/QekCPMzQV7+AyyE8mrHSPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02236159999999998, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEVUCNjsleMAWyUS7aMAXSUR0C6j3RjWkJsdX2UKGgGR0Bwn8ZeiSJTaAdLqWgIR0C6j31/2Cd0dX2UKGgGR0BxmHfyf+S9aAdLjmgIR0C6j4OqaPS2dX2UKGgGR0BxYa4d6sySaAdLwGgIR0C6j5PP9kz5dX2UKGgGR0A/KujASFoMaAdLbGgIR0C6j6HlS0jUdX2UKGgGR0BzpcJdB0IUaAdLwmgIR0C6j8zYmLLqdX2UKGgGR0Bz1x9lVcUuaAdLwGgIR0C6j+PMW43FdX2UKGgGR0BwRwLCvX9SaAdLo2gIR0C6j/ynP3SKdX2UKGgGR0ByINfb9If9aAdLm2gIR0C6kAw9ic5KdX2UKGgGR0BxT9httQ9BaAdLrWgIR0C6kBCdvsJIdX2UKGgGR0ByhmNNrTH9aAdLymgIR0C6kBCBK+SKdX2UKGgGR0Bys2UwBYFJaAdLmWgIR0C6kDuPq9oOdX2UKGgGR0Bx67b+Lm6oaAdLrGgIR0C6kD/DDTBqdX2UKGgGR0BxuDS+g13uaAdLsWgIR0C6kF136hxpdX2UKGgGR0BynpkI5YHPaAdLtmgIR0C6kGRArxy5dX2UKGgGR0Bw6IvYe1a4aAdLkWgIR0C6kHJljEvTdX2UKGgGR0BwNQSdvsJIaAdLsmgIR0C6kK+0LMLXdX2UKGgGR0BynpZDArQPaAdLv2gIR0C6kLpxeb/fdX2UKGgGR0BzqSjJuEVWaAdL1GgIR0C6kL+7cwg1dX2UKGgGR0BwsLGcWj46aAdLxmgIR0C6kL4BmwqzdX2UKGgGR0ByivIRywOfaAdLwWgIR0C6kM26kIomdX2UKGgGR0BxHI7xNIsiaAdL1GgIR0C6kNlVDKHPdX2UKGgGR0Bw0VIUahpQaAdLsGgIR0C6kN8GorFwdX2UKGgGR0Bx6DALy+YdaAdLhGgIR0C6kOQ/s3Q2dX2UKGgGR0BxUv5LytmuaAdLsWgIR0C6kQvpUxVRdX2UKGgGR0BxT9Pci4axaAdLp2gIR0C6kRVrRBu5dX2UKGgGR0BvZ+8Gs3hoaAdLpWgIR0C6kSVmWdEtdX2UKGgGR0ByYdct5D7ZaAdLtGgIR0C6kSiX+l0pdX2UKGgGR0Bv+QMMI/qxaAdLr2gIR0C6kS8bedkKdX2UKGgGR0BzSDZXdTHbaAdLzmgIR0C6kTbGR3eOdX2UKGgGR0By6RJ8OTaCaAdLn2gIR0C6kVNyPuG9dX2UKGgGR0BwSg+jdpIuaAdLoWgIR0C6kU5Q+EAYdX2UKGgGR0BvXI1rIo3KaAdLmWgIR0C6kVYlpoK2dX2UKGgGR0BxuivC/GlzaAdLwWgIR0C6kV6dc0LudX2UKGgGR0BwwL3YcvM9aAdLrWgIR0C6kWilBQendX2UKGgGR0BxhrkgfU4JaAdLmWgIR0C6kWvcWTHKdX2UKGgGR0BxhfpaA4GVaAdLrWgIR0C6kXWQ8wHrdX2UKGgGR0Byrwir1dxAaAdLxGgIR0C6kXu938oAdX2UKGgGR0BxoK4Cp3otaAdLqWgIR0C6kX7HZK4AdX2UKGgGR0BzxQSGrS3LaAdL3mgIR0C6kYcAvL5idX2UKGgGR0BwQN4s3AEdaAdLq2gIR0C6kZGys0YTdX2UKGgGR0ByT9yNn5BUaAdLkWgIR0C6kZCAtnPFdX2UKGgGR0ByKkLZzxPPaAdLxGgIR0C6kZu/1xsEdX2UKGgGR0BwqWxkd3jdaAdLqWgIR0C6kbksjFAFdX2UKGgGR0ByQkZydWhiaAdLv2gIR0C6kckEC/47dX2UKGgGR0BzB22jO9nLaAdL1WgIR0C6kdhr30wrdX2UKGgGR0Bznv+IdlunaAdL6GgIR0C6kd9D2JzldX2UKGgGR0BxLmH31zySaAdLm2gIR0C6kfdjCpFTdX2UKGgGR0ByAQRwqAjIaAdLsWgIR0C6kgz/p+tsdX2UKGgGR0Bztz6dlNDdaAdLumgIR0C6khNa2WpqdX2UKGgGR0Buem+Eh7mdaAdLqmgIR0C6kjgokRjCdX2UKGgGR0BymQtL+PzWaAdL0GgIR0C6kjWs7uD0dX2UKGgGR0ByyMzBRAKOaAdLl2gIR0C6klwX668QdX2UKGgGR0BwqODwpe/paAdLlmgIR0C6kmiGahHtdX2UKGgGR0BwYQMpgCwKaAdLoGgIR0C6knDyFwkxdX2UKGgGR0BzRvfHggoxaAdLsGgIR0C6kqBhH9WIdX2UKGgGR0BxiA2aUiY+aAdLrGgIR0C6krZeu3c6dX2UKGgGR0BnettTDO1OaAdN6ANoCEdAupLRvIfbK3V9lChoBkdAcgw2gWac7WgHS7poCEdAupL7XnQpnnV9lChoBkdAcutHJtBOYmgHS8hoCEdAupMLoicG1XV9lChoBkdAcCejcEeQuGgHS5RoCEdAupM5Nzr/sHV9lChoBkdAZwo5WBBiTmgHTegDaAhHQLqTODh99c91fZQoaAZHQHO8w/9pAUtoB0vxaAhHQLqTQxZuAI91fZQoaAZHQHG6GtlqagFoB0vKaAhHQLqTXGAkLQZ1fZQoaAZHQHJr8KPXCj1oB0ulaAhHQLqTaHuqm0p1fZQoaAZHQHM+F4gRsdloB0vhaAhHQLqTdCtRvWJ1fZQoaAZHQHNusDW9US9oB0vfaAhHQLqTg87p3X91fZQoaAZHQHKqsEzO5axoB0u0aAhHQLqThHerMkh1fZQoaAZHQHIfrfxc3VFoB0vNaAhHQLqTkxtYSxt1fZQoaAZHQHIAtmlImPZoB0u1aAhHQLqTjhJiAlR1fZQoaAZHQHErRiG34KxoB0uzaAhHQLqTtCYkVvd1fZQoaAZHQHIhVHrhR65oB0uCaAhHQLqTur1dxAB1fZQoaAZHQHOPWb1AZ89oB0vQaAhHQLqTzxFRYRx1fZQoaAZHQHLlUF0PpY9oB0ulaAhHQLqT6Jyhi9Z1fZQoaAZHQHBJbQswtapoB0uoaAhHQLqT7P91loV1fZQoaAZHQHHWxyn1nNBoB0vRaAhHQLqUBVuJk5J1fZQoaAZHQHH+Y4dZJTVoB0vQaAhHQLqUFFvhqCZ1fZQoaAZHQHN7XHNorWloB0vfaAhHQLqUMYj0L+h1fZQoaAZHQHOUI4ACGN9oB0uzaAhHQLqUM8W9DhN1fZQoaAZHQHELTijtXxRoB0uhaAhHQLqUM1tfoid1fZQoaAZHQHHz3nyNGVloB0vFaAhHQLqUQFNL1291fZQoaAZHQHHxbMX7+DRoB0umaAhHQLqUX/r0J4V1fZQoaAZHQHDk6W9lEqloB0u2aAhHQLqUaAxi5NJ1fZQoaAZHQHH4DC53C9BoB0vCaAhHQLqUjK9PDYR1fZQoaAZHQHGzlIqbz9VoB0vGaAhHQLqUkS6UaAF1fZQoaAZHQHF5xCD28I1oB0uiaAhHQLqUpJP69Ch1fZQoaAZHQHFMcRtgrpdoB0uraAhHQLqUoIN3GGV1fZQoaAZHQHKeWJWNm19oB0vHaAhHQLqUseruIAR1fZQoaAZHQHGV0O7QLNRoB0vhaAhHQLqUtqqwQlN1fZQoaAZHQHEJiSmqHXVoB0ulaAhHQLqUxdc0Ltx1fZQoaAZHQHOhe4kNWlxoB0u0aAhHQLqU0x6fJ3h1fZQoaAZHQHFF/Z/Tb35oB0vAaAhHQLqU3Jr+Hah1fZQoaAZHQHPk1/+bVjJoB0vKaAhHQLqU83xnWat1fZQoaAZHQHFQ2606YE5oB0u6aAhHQLqVD003wTd1fZQoaAZHQHK+huGbkOtoB0usaAhHQLqVE3gk1Mx1fZQoaAZHQHQ2F1fVqetoB0u4aAhHQLqVIqCYkVx1fZQoaAZHQHD85+tr9EVoB0vEaAhHQLqVKOgg5ip1fZQoaAZHQHDZnN9ph4NoB0u/aAhHQLqVOOHWSU11fZQoaAZHQHMnUYoAn2JoB0vjaAhHQLqVPmlqJuV1fZQoaAZHQHIC4zvZyuJoB0uxaAhHQLqVSkLQXyl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 468, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 12, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ea50f77eed6eaff0bdbec45efa794884e7f2c80499a8310ccdd2bba67dc177c
|
3 |
+
size 148734
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -79,12 +79,12 @@
|
|
79 |
"n_envs": 64,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
-
"gae_lambda": 0.
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
@@ -94,6 +94,6 @@
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d69e2f250>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d69e2f2e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d69e2f370>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d69e2f400>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9d69e2f490>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9d69e2f520>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9d69e2f5b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d69e2f640>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9d69e2f6d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d69e2f760>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d69e2f7f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d69e2f880>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9d79decac0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 5111808,
|
25 |
+
"_total_timesteps": 5000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1689054959226809852,
|
30 |
+
"learning_rate": 0.0001,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAMCQlD0K9z25XsFGNQ+25jDVcQA8fThRtAAAgD8AAIA/ZpLVPO6kpj4+e0G9sv1Tv01Y5DxxVhu8AAAAAAAAAACayV49V5oVPpbSAL4AweK+9QOXvIa2qb0AAAAAAAAAAK2lYT4LKS0/lySRPCkaO7+K8YU+zLUjvgAAAAAAAAAAWifjPfb4QLpOJC++3owivvYUjbzhfDU/AACAPwAAAABmPpU9KXhcuh5llTiaWiUyl1xmOpD0rLcAAIA/AACAPzO0Gz0pUGm6kYW/tpOosrEmSYs7QKbhNQAAgD8AAIA/Mx8bvrRsKz8+XoC7JCkzv4gQSb6mfbw8AAAAAAAAAABmCs08UpjGufqSZrdmsP6ymrYIPAt6iDYAAIA/AACAP/quCr64FM67hYkBO6uh3zj3OjA9Lq8uugAAgD8AAIA/M8tfPVsIoz+NNbM+hugbvzH8RT1qPF0+AAAAAAAAAAAzuI09zHl3PqYl5Luq4Q6/9RYzPTmdEL0AAAAAAAAAAGY04jxkb78/s+ONPjchgz7V4fy8TfZYvQAAAAAAAAAApkMIvnArhz/8fEi+3eRZv7VyHL7Du8C7AAAAAAAAAABmj6A9qUkrPfB8j74iKpO+58WXvVaEgr0AAAAAAAAAADOk5jwK/yg8tI2ZvbvXhL76idG8FCkRvAAAAAAAAAAAszY1vZT7zjs2rMM+WwVFvs7TibwS3F8+AAAAAAAAAAAaot+9/hypP1wTl74KDxS/YnxFvt2D8r0AAAAAAAAAAABwjrvh0Kq6tkzNswIZQK9GoLA5PDDCMwAAgD8AAIA/zWDfPHvajLpuc12zmu0urPRlwzrFALwzAACAPwAAgD8zXbS88P4jP0CBjrywE12/HK05vQ6ps7wAAAAAAAAAANo+6j29Dhc/iq+KPYwXRL93cjw+mmdxvAAAAAAAAAAAM1KAPIdMtT+GgsE+ymSvPFUOvbuO1gM9AAAAAAAAAACmkZy9w6V6ulltFrgLSQiz0/T7uhToLzcAAIA/AACAPyZ0tj1OOoA9WpMevroSA7+u0ME83m5XvQAAAAAAAAAA2uH5vVMUoj9uddW+dQEYvxTzUL57qv+9AAAAAAAAAACThgI+0kCWPpMTEr3xju2+14bpPddHKrwAAAAAAAAAAJr0ljyuTrk/Gke1PnlCjD6oepu78VIxPQAAAAAAAAAAxnYWvo/hIrzYcmW8FpLYunQAhT1Vm7M7AACAPwAAgD/N2Um9FJqUupoElbf10aGyOrbnOilSrDYAAIA/AACAP41g672JwFI9YY6VPhJNbr6PuYS8Qg8ePgAAAAAAAAAAhkZBvlfhfz/dztm+zyc/v7yvqb6AYA6+AAAAAAAAAAAAcxe9kp/4PJIAnDzQD26+SwqUvCskMDwAAAAAAAAAADOrZz64x6w/P1EpP3UsAL+ezMM+yum9PgAAAAAAAAAAZrbVukhXrrpiThw9u+4sM0l7gLr9nU4zAACAPwAAgD9Azok98VywP0urgj4s58e+oqWaPUaHdz0AAAAAAAAAAGZDhLwfaYY6CJrrPIrFpTI6/ru7wla+sAAAgD8AAIA/M+KPPWGGeD85+ok+Vz11v6ky6j3eauw9AAAAAAAAAAD6Gx0+Nqs8vC/CtzrVMs64fyatvfA49rkAAIA/AACAP7MbD72uQaW6OdmatOQpvq6CPKq6JXyEMwAAgD8AAIA/mtyyvAVBpbtuBFg9ErKdPLDkFr2/T4U9AACAPwAAgD9mUCK9w+U3ui+iObN+ntIvcElyO3BAvjMAAIA/AACAPw2QhD3hZIC6VwI6viFa6Ds9ZmI7ysrVvAAAAAAAAIA/zUABvO/NtT8JkUy/ZoHWPlHiFTyGWTk+AAAAAAAAAABaAik+rQYYP3Lzej0pwze/P96PPj2Osr0AAAAAAAAAAEYyZD7eVlQ/pa5bPQTmNb9nTa4+Ji3tvQAAAAAAAAAAZv8HvTNBuj/vccq+FBMcPkSXijtTepC9AAAAAAAAAABGOWg+RETXPppkN77jhw2/CSswPhhiL74AAAAAAAAAAGYuoTyuF6o/Jh7FPYbn3L55OEY9fjiOPQAAAAAAAAAAJsKPPTKFmj/mvjc+goM/v+2cqj3H+JA8AAAAAAAAAAAAS8q9tDvTPkyLSjtE7Di/GL0gvgYvED0AAAAAAAAAAHMkPz5La/0+WfMDvYoJJ7/G1I8+Li+uvQAAAAAAAAAAs8shPej/lz/r1Gk9QdJXvyKyCz2wsNc9AAAAAAAAAADApT2+eeJgPir6Sj6HpQq/uGHDvRsMUz0AAAAAAAAAAGqEer5+sYg+2zblPsTa/r6RV7u8esphPgAAAAAAAAAAE44yvoIjBT6D72Q+P2GavsxEGb7tpz8+AAAAAAAAAADNx7A8FBSEujvZzzM51tcvasjgN3K0prMAAIA/AACAP9ow6r0UNqs+/8LEPNmKL78C5ei9JbDlvAAAAAAAAAAAzfgEvD1mPjomkS41t7cOMLUGPrv2tGO0AACAPwAAgD9zfBy+nMhOvCsEnjokBL4472e1PasC1LkAAIA/AACAP/Nkd74B/oU/l1McvwMuO7+8b8a+DsQ4vgAAAAAAAAAAgIyavYVj5Lk4AQM4AgWzMj7ldTou+Rq3AACAPwAAgD9Gr3a+xNNWPy552b4sUT+/g4fJvmx+ub0AAAAAAAAAAJqJrzq0gZw/QekCPMzQV7+AyyE8mrHSPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.02236159999999998,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEVUCNjsleMAWyUS7aMAXSUR0C6j3RjWkJsdX2UKGgGR0Bwn8ZeiSJTaAdLqWgIR0C6j31/2Cd0dX2UKGgGR0BxmHfyf+S9aAdLjmgIR0C6j4OqaPS2dX2UKGgGR0BxYa4d6sySaAdLwGgIR0C6j5PP9kz5dX2UKGgGR0A/KujASFoMaAdLbGgIR0C6j6HlS0jUdX2UKGgGR0BzpcJdB0IUaAdLwmgIR0C6j8zYmLLqdX2UKGgGR0Bz1x9lVcUuaAdLwGgIR0C6j+PMW43FdX2UKGgGR0BwRwLCvX9SaAdLo2gIR0C6j/ynP3SKdX2UKGgGR0ByINfb9If9aAdLm2gIR0C6kAw9ic5KdX2UKGgGR0BxT9httQ9BaAdLrWgIR0C6kBCdvsJIdX2UKGgGR0ByhmNNrTH9aAdLymgIR0C6kBCBK+SKdX2UKGgGR0Bys2UwBYFJaAdLmWgIR0C6kDuPq9oOdX2UKGgGR0Bx67b+Lm6oaAdLrGgIR0C6kD/DDTBqdX2UKGgGR0BxuDS+g13uaAdLsWgIR0C6kF136hxpdX2UKGgGR0BynpkI5YHPaAdLtmgIR0C6kGRArxy5dX2UKGgGR0Bw6IvYe1a4aAdLkWgIR0C6kHJljEvTdX2UKGgGR0BwNQSdvsJIaAdLsmgIR0C6kK+0LMLXdX2UKGgGR0BynpZDArQPaAdLv2gIR0C6kLpxeb/fdX2UKGgGR0BzqSjJuEVWaAdL1GgIR0C6kL+7cwg1dX2UKGgGR0BwsLGcWj46aAdLxmgIR0C6kL4BmwqzdX2UKGgGR0ByivIRywOfaAdLwWgIR0C6kM26kIomdX2UKGgGR0BxHI7xNIsiaAdL1GgIR0C6kNlVDKHPdX2UKGgGR0Bw0VIUahpQaAdLsGgIR0C6kN8GorFwdX2UKGgGR0Bx6DALy+YdaAdLhGgIR0C6kOQ/s3Q2dX2UKGgGR0BxUv5LytmuaAdLsWgIR0C6kQvpUxVRdX2UKGgGR0BxT9Pci4axaAdLp2gIR0C6kRVrRBu5dX2UKGgGR0BvZ+8Gs3hoaAdLpWgIR0C6kSVmWdEtdX2UKGgGR0ByYdct5D7ZaAdLtGgIR0C6kSiX+l0pdX2UKGgGR0Bv+QMMI/qxaAdLr2gIR0C6kS8bedkKdX2UKGgGR0BzSDZXdTHbaAdLzmgIR0C6kTbGR3eOdX2UKGgGR0By6RJ8OTaCaAdLn2gIR0C6kVNyPuG9dX2UKGgGR0BwSg+jdpIuaAdLoWgIR0C6kU5Q+EAYdX2UKGgGR0BvXI1rIo3KaAdLmWgIR0C6kVYlpoK2dX2UKGgGR0BxuivC/GlzaAdLwWgIR0C6kV6dc0LudX2UKGgGR0BwwL3YcvM9aAdLrWgIR0C6kWilBQendX2UKGgGR0BxhrkgfU4JaAdLmWgIR0C6kWvcWTHKdX2UKGgGR0BxhfpaA4GVaAdLrWgIR0C6kXWQ8wHrdX2UKGgGR0Byrwir1dxAaAdLxGgIR0C6kXu938oAdX2UKGgGR0BxoK4Cp3otaAdLqWgIR0C6kX7HZK4AdX2UKGgGR0BzxQSGrS3LaAdL3mgIR0C6kYcAvL5idX2UKGgGR0BwQN4s3AEdaAdLq2gIR0C6kZGys0YTdX2UKGgGR0ByT9yNn5BUaAdLkWgIR0C6kZCAtnPFdX2UKGgGR0ByKkLZzxPPaAdLxGgIR0C6kZu/1xsEdX2UKGgGR0BwqWxkd3jdaAdLqWgIR0C6kbksjFAFdX2UKGgGR0ByQkZydWhiaAdLv2gIR0C6kckEC/47dX2UKGgGR0BzB22jO9nLaAdL1WgIR0C6kdhr30wrdX2UKGgGR0Bznv+IdlunaAdL6GgIR0C6kd9D2JzldX2UKGgGR0BxLmH31zySaAdLm2gIR0C6kfdjCpFTdX2UKGgGR0ByAQRwqAjIaAdLsWgIR0C6kgz/p+tsdX2UKGgGR0Bztz6dlNDdaAdLumgIR0C6khNa2WpqdX2UKGgGR0Buem+Eh7mdaAdLqmgIR0C6kjgokRjCdX2UKGgGR0BymQtL+PzWaAdL0GgIR0C6kjWs7uD0dX2UKGgGR0ByyMzBRAKOaAdLl2gIR0C6klwX668QdX2UKGgGR0BwqODwpe/paAdLlmgIR0C6kmiGahHtdX2UKGgGR0BwYQMpgCwKaAdLoGgIR0C6knDyFwkxdX2UKGgGR0BzRvfHggoxaAdLsGgIR0C6kqBhH9WIdX2UKGgGR0BxiA2aUiY+aAdLrGgIR0C6krZeu3c6dX2UKGgGR0BnettTDO1OaAdN6ANoCEdAupLRvIfbK3V9lChoBkdAcgw2gWac7WgHS7poCEdAupL7XnQpnnV9lChoBkdAcutHJtBOYmgHS8hoCEdAupMLoicG1XV9lChoBkdAcCejcEeQuGgHS5RoCEdAupM5Nzr/sHV9lChoBkdAZwo5WBBiTmgHTegDaAhHQLqTODh99c91fZQoaAZHQHO8w/9pAUtoB0vxaAhHQLqTQxZuAI91fZQoaAZHQHG6GtlqagFoB0vKaAhHQLqTXGAkLQZ1fZQoaAZHQHJr8KPXCj1oB0ulaAhHQLqTaHuqm0p1fZQoaAZHQHM+F4gRsdloB0vhaAhHQLqTdCtRvWJ1fZQoaAZHQHNusDW9US9oB0vfaAhHQLqTg87p3X91fZQoaAZHQHKqsEzO5axoB0u0aAhHQLqThHerMkh1fZQoaAZHQHIfrfxc3VFoB0vNaAhHQLqTkxtYSxt1fZQoaAZHQHIAtmlImPZoB0u1aAhHQLqTjhJiAlR1fZQoaAZHQHErRiG34KxoB0uzaAhHQLqTtCYkVvd1fZQoaAZHQHIhVHrhR65oB0uCaAhHQLqTur1dxAB1fZQoaAZHQHOPWb1AZ89oB0vQaAhHQLqTzxFRYRx1fZQoaAZHQHLlUF0PpY9oB0ulaAhHQLqT6Jyhi9Z1fZQoaAZHQHBJbQswtapoB0uoaAhHQLqT7P91loV1fZQoaAZHQHHWxyn1nNBoB0vRaAhHQLqUBVuJk5J1fZQoaAZHQHH+Y4dZJTVoB0vQaAhHQLqUFFvhqCZ1fZQoaAZHQHN7XHNorWloB0vfaAhHQLqUMYj0L+h1fZQoaAZHQHOUI4ACGN9oB0uzaAhHQLqUM8W9DhN1fZQoaAZHQHELTijtXxRoB0uhaAhHQLqUM1tfoid1fZQoaAZHQHHz3nyNGVloB0vFaAhHQLqUQFNL1291fZQoaAZHQHHxbMX7+DRoB0umaAhHQLqUX/r0J4V1fZQoaAZHQHDk6W9lEqloB0u2aAhHQLqUaAxi5NJ1fZQoaAZHQHH4DC53C9BoB0vCaAhHQLqUjK9PDYR1fZQoaAZHQHGzlIqbz9VoB0vGaAhHQLqUkS6UaAF1fZQoaAZHQHF5xCD28I1oB0uiaAhHQLqUpJP69Ch1fZQoaAZHQHFMcRtgrpdoB0uraAhHQLqUoIN3GGV1fZQoaAZHQHKeWJWNm19oB0vHaAhHQLqUseruIAR1fZQoaAZHQHGV0O7QLNRoB0vhaAhHQLqUtqqwQlN1fZQoaAZHQHEJiSmqHXVoB0ulaAhHQLqUxdc0Ltx1fZQoaAZHQHOhe4kNWlxoB0u0aAhHQLqU0x6fJ3h1fZQoaAZHQHFF/Z/Tb35oB0vAaAhHQLqU3Jr+Hah1fZQoaAZHQHPk1/+bVjJoB0vKaAhHQLqU83xnWat1fZQoaAZHQHFQ2606YE5oB0u6aAhHQLqVD003wTd1fZQoaAZHQHK+huGbkOtoB0usaAhHQLqVE3gk1Mx1fZQoaAZHQHQ2F1fVqetoB0u4aAhHQLqVIqCYkVx1fZQoaAZHQHD85+tr9EVoB0vEaAhHQLqVKOgg5ip1fZQoaAZHQHDZnN9ph4NoB0u/aAhHQLqVOOHWSU11fZQoaAZHQHMnUYoAn2JoB0vjaAhHQLqVPmlqJuV1fZQoaAZHQHIC4zvZyuJoB0uxaAhHQLqVSkLQXyl1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 468,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
79 |
"n_envs": 64,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 12,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a8c2a548c977d83676d557ad30b3ed0831ede26ae8256efb7b845b2d9fda32e
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5c01b87215a6610b8d5251d32787ef22db60eaeff59af5d1ef96217454197c7
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 278.35761202935845, "std_reward": 18.17588165944456, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-11T07:53:14.639608"}
|