See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/tiny-dummy-qwen2
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 09e55685d8a15ab8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/09e55685d8a15ab8_train_data.json
type:
field_input: documents
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/98f08490-4ab5-48f6-b045-ed42ffbef8f0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 1980
micro_batch_size: 4
mlflow_experiment_name: /tmp/09e55685d8a15ab8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 1613
wandb_entity: null
wandb_mode: online
wandb_name: fdf695ea-b676-42ab-ac8c-b9652dfdf1eb
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fdf695ea-b676-42ab-ac8c-b9652dfdf1eb
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
98f08490-4ab5-48f6-b045-ed42ffbef8f0
This model is a fine-tuned version of fxmarty/tiny-dummy-qwen2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.9133
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1980
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.9306 | 0.0008 | 1 | 11.9321 |
11.9209 | 0.0826 | 100 | 11.9209 |
11.9184 | 0.1653 | 200 | 11.9188 |
11.9177 | 0.2479 | 300 | 11.9163 |
11.9164 | 0.3305 | 400 | 11.9155 |
11.9169 | 0.4131 | 500 | 11.9151 |
11.9148 | 0.4958 | 600 | 11.9147 |
11.9151 | 0.5784 | 700 | 11.9144 |
11.9151 | 0.6610 | 800 | 11.9141 |
11.9137 | 0.7436 | 900 | 11.9138 |
11.9134 | 0.8263 | 1000 | 11.9137 |
11.9111 | 0.9089 | 1100 | 11.9136 |
11.9128 | 0.9915 | 1200 | 11.9135 |
11.5218 | 1.0742 | 1300 | 11.9134 |
11.6552 | 1.1568 | 1400 | 11.9134 |
11.885 | 1.2394 | 1500 | 11.9134 |
11.6617 | 1.3220 | 1600 | 11.9133 |
11.5499 | 1.4047 | 1700 | 11.9133 |
12.7226 | 1.4873 | 1800 | 11.9133 |
11.4889 | 1.5699 | 1900 | 11.9133 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 16
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for romainnn/98f08490-4ab5-48f6-b045-ed42ffbef8f0
Base model
fxmarty/tiny-dummy-qwen2