See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/gpt-neo-1.3B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e5625f7766855655_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e5625f7766855655_train_data.json
type:
field_instruction: chat
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/f083a5bd-ba97-48d4-980a-c85badd3b363
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2346
micro_batch_size: 4
mlflow_experiment_name: /tmp/e5625f7766855655_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04438132433871827
wandb_entity: null
wandb_mode: online
wandb_name: 6bb1ae2c-eec7-426b-8297-d030ba828c03
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6bb1ae2c-eec7-426b-8297-d030ba828c03
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
f083a5bd-ba97-48d4-980a-c85badd3b363
This model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0071
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2346
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.119 | 0.0003 | 1 | 0.6604 |
0.1114 | 0.0297 | 100 | 0.0141 |
0.078 | 0.0594 | 200 | 0.0110 |
0.1317 | 0.0892 | 300 | 0.0098 |
0.0564 | 0.1189 | 400 | 0.0093 |
0.0795 | 0.1486 | 500 | 0.0090 |
0.0728 | 0.1783 | 600 | 0.0088 |
0.0607 | 0.2081 | 700 | 0.0087 |
0.0625 | 0.2378 | 800 | 0.0086 |
0.0647 | 0.2675 | 900 | 0.0083 |
0.0724 | 0.2972 | 1000 | 0.0081 |
0.0765 | 0.3270 | 1100 | 0.0079 |
0.0637 | 0.3567 | 1200 | 0.0078 |
0.0796 | 0.3864 | 1300 | 0.0077 |
0.042 | 0.4161 | 1400 | 0.0076 |
0.0556 | 0.4458 | 1500 | 0.0075 |
0.053 | 0.4756 | 1600 | 0.0074 |
0.0722 | 0.5053 | 1700 | 0.0074 |
0.0631 | 0.5350 | 1800 | 0.0073 |
0.0485 | 0.5647 | 1900 | 0.0072 |
0.0627 | 0.5945 | 2000 | 0.0072 |
0.0765 | 0.6242 | 2100 | 0.0072 |
0.1001 | 0.6539 | 2200 | 0.0072 |
0.0643 | 0.6836 | 2300 | 0.0071 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for romainnn/f083a5bd-ba97-48d4-980a-c85badd3b363
Base model
EleutherAI/gpt-neo-1.3B