Model trained on the TinyStories Dataset, see https://arxiv.org/abs/2305.07759
Based on GPT-Neo architecture.
License: mit
hyperparams used to train this model:
lr = 5e-4,
lr_schedule = constant,
wd=0.1,
adam_beta1=0.9, adam_beta2 = 0.95,
context_length=512,
batch_size=80,
gradient_accumulation_steps=16
------ EXAMPLE USAGE ---
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-33M')
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
prompt = "Once upon a time there was"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# Generate completion
output = model.generate(input_ids, max_length = 1000, num_beams=1)
# Decode the completion
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
# Print the generated text
print(output_text)
- Downloads last month
- 23,197
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.