row56's picture
Upload proto_model/proto.py with huggingface_hub
f4b2cc5 verified
import logging
import os
import numpy as np
import pytorch_lightning as pl
import torchmetrics
from torchmetrics.classification import F1Score, AUROC
import torch
import transformers
from transformers import AutoModel
import torch.nn.functional as F
import torch.nn as nn
import sys
sys.path.insert(0, '..')
from . import utils
from . import metrics
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
logger = logging.getLogger()
class ProtoModule(pl.LightningModule):
def __init__(self,
pretrained_model,
num_classes,
label_order_path,
use_sigmoid=False,
use_cuda=True,
lr_prototypes=5e-2,
lr_features=2e-6,
lr_others=2e-2,
num_training_steps=5000,
num_warmup_steps=1000,
loss='BCE',
save_dir='output',
use_attention=True,
dot_product=False,
normalize=None,
final_layer=False,
reduce_hidden_size=None,
use_prototype_loss=False,
prototype_vector_path=None,
attention_vector_path=None,
eval_buckets=None,
seed=7
):
super().__init__()
self.label_order_path = label_order_path
self.loss = loss
self.normalize = normalize
self.lr_features = lr_features
self.lr_prototypes = lr_prototypes
self.lr_others = lr_others
self.use_sigmoid = use_sigmoid
self.use_cuda = use_cuda
self.use_attention = use_attention
self.dot_product = dot_product
self.num_training_steps = num_training_steps
self.num_warmup_steps = num_warmup_steps
self.save_dir = save_dir
self.num_classes = num_classes
self.final_layer = final_layer
self.use_prototype_loss = use_prototype_loss
self.prototype_vector_path = prototype_vector_path
self.eval_buckets = eval_buckets
# ARCHITECTURE SETUP #
from pytorch_lightning import seed_everything
seed_everything(seed)
# define distance measure
self.pairwise_dist = nn.PairwiseDistance(p=2)
# load BERT
self.bert = AutoModel.from_pretrained(pretrained_model)
# freeze BERT layers if lr_features == 0
if lr_features == 0:
for param in self.bert.parameters():
param.requires_grad = False
# define hidden size
self.hidden_size = self.bert.config.hidden_size
self.reduce_hidden_size = reduce_hidden_size is not None
if self.reduce_hidden_size:
self.reduce_hidden_size = True
self.bert_hidden_size = self.bert.config.hidden_size
self.hidden_size = reduce_hidden_size
# initialize linear layer for dim reduction
# reset the seed to make sure linear layer is the same as in preprocessing
pl.utilities.seed.seed_everything(seed=seed)
self.linear = nn.Linear(self.bert_hidden_size, self.hidden_size)
# load prototype vectors
if prototype_vector_path is not None:
prototype_vectors, self.num_prototypes_per_class = self.load_prototype_vectors(prototype_vector_path)
else:
prototype_vectors = torch.rand((self.num_classes, self.hidden_size))
self.num_prototypes_per_class = torch.ones(self.num_classes)
self.prototype_vectors = nn.Parameter(prototype_vectors, requires_grad=True)
self.prototype_to_class_map = self.build_prototype_to_class_mapping(self.num_prototypes_per_class)
self.num_prototypes = self.prototype_to_class_map.shape[0]
# load attention vectors
if attention_vector_path is not None:
attention_vectors = self.load_attention_vectors(attention_vector_path)
else:
attention_vectors = torch.rand((self.num_classes, self.hidden_size))
self.attention_vectors = nn.Parameter(attention_vectors, requires_grad=True)
if self.final_layer:
self.final_linear = self.build_final_layer()
# EVALUATION SETUP #
# setup metrics
self.train_metrics = self.setup_metrics()
# initialise metrics for evaluation on test set
# self.all_metrics = {**self.train_metrics, **self.setup_extensive_metrics()}
self.all_metrics = {**self.train_metrics}
self.save_hyperparameters()
logger.info("Finished init.")
def build_final_layer(self):
prototype_identity_matrix = torch.zeros(self.num_prototypes, self.num_classes)
for j in range(len(prototype_identity_matrix)):
prototype_identity_matrix[j, self.prototype_to_class_map[j]] = 1.0 / self.num_prototypes_per_class[
self.prototype_to_class_map[j]]
if self.use_cuda:
prototype_identity_matrix = prototype_identity_matrix.cuda()
return nn.Parameter(prototype_identity_matrix.double(), requires_grad=True)
def load_prototype_vectors(self, prototypes_per_class_path):
prototypes_per_class = torch.load(prototypes_per_class_path)
# store the number of prototypes for each class
num_prototypes_per_class = torch.tensor([len(prototypes_per_class[key]) for key in prototypes_per_class])
with open(self.label_order_path) as label_order_file:
ordered_labels = label_order_file.read().split(" ")
# get dimension from any of the stored vectors
vector_dim = len(list(prototypes_per_class.values())[0][0])
stacked_prototypes_per_class = [
prototypes_per_class[label] if label in prototypes_per_class else [np.random.rand(vector_dim)]
for label in ordered_labels]
prototype_matrix = torch.tensor([val for sublist in stacked_prototypes_per_class for val in sublist])
return prototype_matrix, num_prototypes_per_class
def build_prototype_to_class_mapping(self, num_prototypes_per_class):
return torch.arange(num_prototypes_per_class.shape[0]).repeat_interleave(num_prototypes_per_class.long(),
dim=0)
def load_attention_vectors(self, attention_vectors_path):
attention_vectors = torch.load(attention_vectors_path, map_location=self.device)
return attention_vectors
def setup_metrics(self):
self.f1 = F1Score(task="multilabel", num_labels=self.num_classes, threshold=0.269)
self.auroc_micro = AUROC(task="multilabel", num_labels=self.num_classes, average="micro")
self.auroc_macro = AUROC(task="multilabel", num_labels=self.num_classes, average="macro")
return {"auroc_micro": self.auroc_micro,
"auroc_macro": self.auroc_macro,
"f1": self.f1}
def setup_extensive_metrics(self):
self.pr_curve = metrics.PR_AUC(num_classes=self.num_classes)
extensive_metrics = {"pr_curve": self.pr_curve}
if self.eval_buckets:
buckets = self.eval_buckets
self.prcurve_0 = metrics.PR_AUCPerBucket(bucket=buckets["<5"],
num_classes=self.num_classes,
compute_on_step=False)
self.prcurve_1 = metrics.PR_AUCPerBucket(bucket=buckets["5-10"],
num_classes=self.num_classes,
compute_on_step=False)
self.prcurve_2 = metrics.PR_AUCPerBucket(bucket=buckets["11-50"],
num_classes=self.num_classes,
compute_on_step=False)
self.prcurve_3 = metrics.PR_AUCPerBucket(bucket=buckets["51-100"],
num_classes=self.num_classes,
compute_on_step=False)
self.prcurve_4 = metrics.PR_AUCPerBucket(bucket=buckets["101-1K"],
num_classes=self.num_classes,
compute_on_step=False)
self.prcurve_5 = metrics.PR_AUCPerBucket(bucket=buckets[">1K"],
num_classes=self.num_classes,
compute_on_step=False)
self.auroc_macro_0 = metrics.FilteredAUROCPerBucket(bucket=buckets["<5"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
self.auroc_macro_1 = metrics.FilteredAUROCPerBucket(bucket=buckets["5-10"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
self.auroc_macro_2 = metrics.FilteredAUROCPerBucket(bucket=buckets["11-50"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
self.auroc_macro_3 = metrics.FilteredAUROCPerBucket(bucket=buckets["51-100"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
self.auroc_macro_4 = metrics.FilteredAUROCPerBucket(bucket=buckets["101-1K"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
self.auroc_macro_5 = metrics.FilteredAUROCPerBucket(bucket=buckets[">1K"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
bucket_metrics = {"pr_curve_0": self.prcurve_0,
"pr_curve_1": self.prcurve_1,
"pr_curve_2": self.prcurve_2,
"pr_curve_3": self.prcurve_3,
"pr_curve_4": self.prcurve_4,
"pr_curve_5": self.prcurve_5,
"auroc_macro_0": self.auroc_macro_0,
"auroc_macro_1": self.auroc_macro_1,
"auroc_macro_2": self.auroc_macro_2,
"auroc_macro_3": self.auroc_macro_3,
"auroc_macro_4": self.auroc_macro_4,
"auroc_macro_5": self.auroc_macro_5}
extensive_metrics = {**extensive_metrics, **bucket_metrics}
return extensive_metrics
def configure_optimizers(self):
joint_optimizer_specs = [{'params': self.prototype_vectors, 'lr': self.lr_prototypes},
{'params': self.attention_vectors, 'lr': self.lr_others},
{'params': self.bert.parameters(), 'lr': self.lr_features}]
if self.final_layer:
joint_optimizer_specs.append({'params': self.final_linear, 'lr': self.lr_prototypes})
if self.reduce_hidden_size:
joint_optimizer_specs.append({'params': self.linear.parameters(), 'lr': self.lr_others})
optimizer = torch.optim.AdamW(joint_optimizer_specs)
lr_scheduler = transformers.get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=self.num_warmup_steps,
num_training_steps=self.num_training_steps
)
return [optimizer], [lr_scheduler]
def on_train_start(self):
self.logger.log_hyperparams(self.hparams)
def training_step(self, batch, batch_idx):
targets = torch.tensor(batch['targets'], device=self.device)
if self.use_prototype_loss:
if batch_idx == 0:
self.prototype_loss = self.calculate_prototype_loss()
self.log('prototype_loss', self.prototype_loss, on_epoch=True)
logits, _ = self(batch)
if self.loss == "BCE":
train_loss = torch.nn.functional.binary_cross_entropy_with_logits(logits, target=targets.float())
else:
train_loss = torch.nn.MultiLabelSoftMarginLoss()(input=torch.sigmoid(logits), target=targets)
self.log('train_loss', train_loss, on_epoch=True)
if self.use_prototype_loss:
total_loss = train_loss + self.prototype_loss
else:
total_loss = train_loss
return total_loss
def forward(self, batch):
attention_mask = batch["attention_masks"]
input_ids = batch["input_ids"]
token_type_ids = batch["token_type_ids"]
if attention_mask.device != self.device:
attention_mask = attention_mask.to(self.device)
input_ids = input_ids.to(self.device)
token_type_ids = token_type_ids.to(self.device)
bert_output = self.bert(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
bert_vectors = bert_output.last_hidden_state
if self.reduce_hidden_size:
# apply linear layer to reduce token vector dimension
token_vectors = self.linear(bert_vectors)
else:
token_vectors = bert_vectors
if self.normalize is not None:
token_vectors = nn.functional.normalize(token_vectors, p=2, dim=self.normalize)
metadata = None
if self.use_attention:
attention_mask_from_tokens = utils.attention_mask_from_tokens(attention_mask, batch["tokens"])
weighted_samples_per_class, attention_per_token_and_class = self.calculate_token_class_attention(
token_vectors,
self.attention_vectors,
mask=attention_mask_from_tokens)
if self.normalize is not None:
weighted_samples_per_class = nn.functional.normalize(weighted_samples_per_class, p=2,
dim=self.normalize)
if self.use_cuda:
weighted_samples_per_class = weighted_samples_per_class.cuda()
self.num_prototypes_per_class = self.num_prototypes_per_class.cuda()
weighted_samples_per_prototype = weighted_samples_per_class.repeat_interleave(
self.num_prototypes_per_class
.long(), dim=1)
if self.dot_product:
score_per_prototype = torch.einsum('bs,abs->ab', self.prototype_vectors,
weighted_samples_per_prototype)
else:
score_per_prototype = -self.pairwise_dist(self.prototype_vectors.T,
weighted_samples_per_prototype.permute(0, 2, 1))
metadata = attention_per_token_and_class, weighted_samples_per_prototype
else:
score_per_prototype = -torch.cdist(token_vectors.mean(dim=1), self.prototype_vectors)
logits = self.get_logits_per_class(score_per_prototype)
return logits, metadata
def calculate_token_class_attention(self, batch_samples, class_attention_vectors, mask=None):
if class_attention_vectors.device != batch_samples.device:
class_attention_vectors = class_attention_vectors.to(batch_samples.device)
score_per_token_and_class = torch.einsum('ikj,mj->imk', batch_samples, class_attention_vectors)
if mask is not None:
expanded_mask = mask.unsqueeze(dim=1).expand(mask.size(0), class_attention_vectors.size(0), mask.size(1))
expanded_mask = F.pad(input=expanded_mask,
pad=(0, score_per_token_and_class.shape[2] - expanded_mask.shape[2]),
mode='constant', value=0)
score_per_token_and_class = score_per_token_and_class.masked_fill(
(expanded_mask == 0),
float('-inf'))
if self.use_sigmoid:
attention_per_token_and_class = torch.sigmoid(score_per_token_and_class) / \
score_per_token_and_class.shape[2]
else:
attention_per_token_and_class = F.softmax(score_per_token_and_class, dim=2)
class_weighted_tokens = torch.einsum('ikjm,ikj->ikjm',
batch_samples.unsqueeze(dim=1).expand(batch_samples.size(0),
self.num_classes,
batch_samples.size(1),
batch_samples.size(2)),
attention_per_token_and_class)
weighted_samples_per_class = class_weighted_tokens.sum(dim=2)
return weighted_samples_per_class, attention_per_token_and_class
def get_logits_per_class(self, score_per_prototype):
if self.final_layer:
if score_per_prototype.device != self.final_linear.device:
score_per_prototype = score_per_prototype.to(self.final_linear.device)
return torch.matmul(score_per_prototype, self.final_linear)
else:
batch_size = score_per_prototype.shape[0]
fill_vector = torch.full((batch_size, self.num_classes, self.num_prototypes), fill_value=float("-inf"),
dtype=score_per_prototype.dtype)
if self.use_cuda:
fill_vector = fill_vector.cuda()
self.prototype_to_class_map = self.prototype_to_class_map.cuda()
group_logits_by_class = fill_vector.scatter_(1,
self.prototype_to_class_map.unsqueeze(0).repeat(batch_size,
1).unsqueeze(
1),
score_per_prototype.unsqueeze(1))
max_logits_per_class = torch.max(group_logits_by_class, dim=2).values
return max_logits_per_class
def calculate_prototype_loss(self):
prototype_loss = 100 / torch.tensor([torch.cdist(
self.prototype_vectors[(self.prototype_to_class_map == i).nonzero().flatten()][:1],
self.prototype_vectors[(self.prototype_to_class_map == i).nonzero().flatten()][1:]).min() for i in
range(self.num_classes) if
len((self.prototype_to_class_map == i).nonzero()) > 1]).sum()
return prototype_loss
def validation_step(self, batch, batch_idx):
with torch.no_grad():
targets = torch.tensor(batch['targets'], device=self.device)
logits, _ = self(batch)
for metric_name in self.train_metrics:
metric = self.train_metrics[metric_name]
metric(torch.sigmoid(logits), targets)
def validation_epoch_end(self, outputs) -> None:
for metric_name in self.train_metrics:
metric = self.train_metrics[metric_name]
self.log(f"val/{metric_name}", metric.compute())
metric.reset()
def test_step(self, batch, batch_idx):
with torch.no_grad():
targets = torch.tensor(batch['targets'], device=self.device)
logits, _ = self(batch)
preds = torch.sigmoid(logits)
for metric_name in self.all_metrics:
metric = self.all_metrics[metric_name]
metric(preds, targets)
return preds, targets
def test_epoch_end(self, outputs) -> None:
log_dir = self.logger.log_dir
for metric_name in self.all_metrics:
metric = self.all_metrics[metric_name]
value = metric.compute()
self.log(f"test/{metric_name}", value)
with open(os.path.join(log_dir, 'test_metrics.txt'), 'a') as metrics_file:
metrics_file.write(f"{metric_name}: {value}\n")
metric.reset()
predictions = torch.cat([out[0] for out in outputs])
# numpy.save(os.path.join(self.logger.log_dir, "predictions"), predictions)
targets = torch.cat([out[1] for out in outputs])
# numpy.save(os.path.join(self.logger.log_dir, "targets"), targets)
pr_auc = metrics.calculate_pr_auc(prediction=predictions, target=targets, num_classes=self.num_classes,
device=self.device)
with open(os.path.join(self.logger.log_dir, 'PR_AUC_score.txt'), 'w') as metrics_file:
metrics_file.write(f"PR AUC: {pr_auc.cpu().numpy()}\n")