File size: 13,344 Bytes
3290550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ebc17
3290550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ebc17
3290550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import sys
import torch
import cooler
import click
import numpy as np
import pandas as pd
from importlib_resources import files

from torch import nn
from tqdm import tqdm
from torch.cuda.amp import autocast
from torch.utils.data import DataLoader

from sklearn.neighbors import KDTree
from polaris.model.polarisnet import polarisnet
from polaris.utils.util_data import centerPredCoolDataset

def rhoDelta(data,resol,dc,radius): 
    
    pos = data[[1, 4]].to_numpy() // resol
    posTree = KDTree(pos, leaf_size=30, metric='chebyshev')
    NNindexes, NNdists = posTree.query_radius(pos, r=radius, return_distance=True)
    _l = []
    for v in NNindexes:
        _l.append(len(v))
    _l=np.asarray(_l)
    data = data[_l>5].reset_index(drop=True)
    
    if data.shape[0] != 0:
        pos = data[[1, 4]].to_numpy() // resol
        val = data[6].to_numpy()

        try:
            posTree = KDTree(pos, leaf_size=30, metric='chebyshev')
            NNindexes, NNdists = posTree.query_radius(pos, r=dc, return_distance=True)
        except ValueError as e:
            if "Found array with 0 sample(s)" in str(e):
                print("#"*88,'\n#')
                print("#\033[91m Error!!! The data is too sparse. Please decrease the value of: [t]\033[0m\n#")
                print("#"*88,'\n')
                sys.exit(1)
            else:
                raise

        rhos = []
        for i in range(len(NNindexes)):
            rhos.append(np.dot(np.exp(-(NNdists[i] / dc) ** 2), val[NNindexes[i]]))
        rhos = np.asarray(rhos)

        _r = 100
        _indexes, _dists = posTree.query_radius(pos, r=_r, return_distance=True, sort_results=True)
        deltas = rhos * 0
        LargerNei = rhos * 0 - 1
        for i in range(len(_indexes)):
            idx = np.argwhere(rhos[_indexes[i]] > rhos[_indexes[i][0]])
            if idx.shape[0] == 0:
                deltas[i] = _dists[i][-1] + 1
            else:
                LargerNei[i] = _indexes[i][idx[0]]
                deltas[i] = _dists[i][idx[0]]
        failed = np.argwhere(LargerNei == -1).flatten()
        while len(failed) > 1 and _r < 100000:
            _r = _r * 10
            _indexes, _dists = posTree.query_radius(pos[failed], r=_r, return_distance=True, sort_results=True)
            for i in range(len(_indexes)):
                idx = np.argwhere(rhos[_indexes[i]] > rhos[_indexes[i][0]])
                if idx.shape[0] == 0:
                    deltas[failed[i]] = _dists[i][-1] + 1
                else:
                    LargerNei[failed[i]] = _indexes[i][idx[0]]
                    deltas[failed[i]] = _dists[i][idx[0]]
            failed = np.argwhere(LargerNei == -1).flatten()

        data['rhos']=rhos
        data['deltas']=deltas
    else:
        data['rhos']=[]
        data['deltas']=[]
    return data

def pool(data,dc,resol,mindelta,t,output,radius,refine=True):
    ccs = set(data.iloc[:,0])

    if data.shape[0] == 0:
        print("#"*88,'\n#')
        print("#\033[91m Error!!! The file is empty. Please check your file.\033[0m\n#")
        print("#"*88,'\n')
        sys.exit(1)
    data = data[data[6] > t].reset_index(drop=True)
    data = data[data[4] - data[1] > 11*resol].reset_index(drop=True)
    if data.shape[0] == 0:
        print("#"*88,'\n#')
        print("#\033[91m Error!!! The data is too sparse. Please decrease: [threshold] (minimum: 0.5).\033[0m\n#")
        print("#"*88,'\n')
        sys.exit(1)
    data[['rhos','deltas']]=0
    data=data.groupby([0]).apply(rhoDelta,resol=resol,dc=dc,radius=radius).reset_index(drop=True)
    minrho=0
    targetData=data.reset_index(drop=True)

    loopPds=[]
    chroms=tqdm(set(targetData[0]), dynamic_ncols=True)
    for chrom in chroms:
        chroms.desc = f"[Runing clustering on {chrom}]"
        data = targetData[targetData[0]==chrom].reset_index(drop=True)

        pos = data[[1, 4]].to_numpy() // resol
        posTree = KDTree(pos, leaf_size=30, metric='chebyshev')

        rhos = data['rhos'].to_numpy()
        deltas = data['deltas'].to_numpy()
        centroid = np.argwhere((rhos > minrho) & (deltas > mindelta)).flatten()

        _r = 100
        _indexes, _dists = posTree.query_radius(pos, r=_r, return_distance=True, sort_results=True)
        LargerNei = rhos * 0 - 1
        for i in range(len(_indexes)):
            idx = np.argwhere(rhos[_indexes[i]] > rhos[_indexes[i][0]])
            if idx.shape[0] == 0:
                pass
            else:
                LargerNei[i] = _indexes[i][idx[0]]

        failed = np.argwhere(LargerNei == -1).flatten()
        while len(failed) > 1 and _r < 100000:
            _r = _r * 10
            _indexes, _dists = posTree.query_radius(pos[failed], r=_r, return_distance=True, sort_results=True)
            for i in range(len(_indexes)):
                idx = np.argwhere(rhos[_indexes[i]] > rhos[_indexes[i][0]])
                if idx.shape[0] == 0:
                    pass
                else:
                    LargerNei[failed[i]] = _indexes[i][idx[0]]
            failed = np.argwhere(LargerNei == -1).flatten()

        LargerNei = LargerNei.astype(int)
        label = LargerNei * 0 - 1
        for i in range(len(centroid)):
            label[centroid[i]] = i
        decreasingsortedIdxRhos = np.argsort(-rhos)
        for i in decreasingsortedIdxRhos:
            if label[i] == -1:
                label[i] = label[LargerNei[i]]

        val = data[6].to_numpy()
        refinedLoop = []
        label = label.flatten()
        for l in set(label):
            idx = np.argwhere(label == l).flatten()
            if len(idx) > 0:
                refinedLoop.append(idx[np.argmax(val[idx])])
        if refine:
            loopPds.append(data.loc[refinedLoop])
        else:
            loopPds.append(data.loc[centroid])

    loopPd=pd.concat(loopPds).sort_values(6,ascending=False)
    loopPd[[1, 2, 4, 5]] = loopPd[[1, 2, 4, 5]].astype(int)
    loopPd[[0,1,2,3,4,5,6]].to_csv(output,sep='\t',header=False, index=False)

    ccs_ = set(loopPd.iloc[:,0])
    badc = ccs.difference(ccs_)
    
    return len(loopPd),badc,ccs
    
    
@click.command()
@click.option('-b','--batchsize', type=int, default=128, help='Batch size [128]')
@click.option('-C','--cpu', type=bool, default=False, help='Use CPU [False]')
@click.option('-G','--gpu', type=str, default=None, help='Comma-separated GPU indices [auto select]')
@click.option('-c','--chrom', type=str, default=None, help='Comma separated chroms [all autosomes]')
@click.option('-nw','--workers', type=int, default=16, help='Number of cpu threads [16]')
@click.option('-t','--threshold', type=float, default=0.6, help='Loop Score Threshold [0.6]')
@click.option('-s','--sparsity', type=float, default=0.9, help='Allowed sparsity of submatrices [0.9]')
@click.option('-md','--max_distance', type=int, default=3000000, help='Max distance (bp) between contact pairs [3000000]')
@click.option('-r','--resol',type=int,default=5000,help ='Resolution [5000]')
@click.option('-dc','--distance_cutoff', type=int, default=5, help='Distance cutoff for local density calculation in terms of bin. [5]')
@click.option('-R','--radius', type=int, default=2, help='Radius threshold to remove outliers. [2]')
@click.option('-d','--mindelta', type=float, default=5, help='Min distance allowed between two loops [5]')
@click.option('--raw',type=bool,default=False,help ='Raw matrix or balanced matrix')
@click.option('-i','--input', type=str,required=True,help='Hi-C contact map path')
@click.option('-o','--output', type=str,required=True,help='.bedpe file path to save loops')
def pred(batchsize, cpu, gpu, chrom, threshold, sparsity, workers, max_distance, resol, distance_cutoff, radius, mindelta, input, output, raw, image=224):
    """Predict loops from input contact map directly
    """
    print('\npolaris loop pred START :)')

    center_size = image // 2
    start_idx = (image - center_size) // 2
    end_idx = (image + center_size) // 2
    slice_obj_pred = (slice(None), slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
    slice_obj_coord = (slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
    
    results=[]
    
    if cpu:
        assert gpu is None, "\033[91m QAQ The CPU and GPU modes cannot be used simultaneously. Please check the command. \033[0m\n"
        gpu = ['None']
        device = torch.device("cpu")
        print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
    else:
        if torch.cuda.is_available():
            if gpu is not None:
                print("Using the specified GPU: " + gpu)
                gpu=[int(i) for i in gpu.split(',')]
                device = torch.device(f"cuda:{gpu[0]}")
            else:
                gpuIdx = torch.cuda.current_device()
                device = torch.device(gpuIdx)
                print("Automatically selected GPU: " + str(gpuIdx))
                gpu=[gpu]
        else:
            device = torch.device("cpu")
            gpu = ['None']
            cpu = True
            print('GPU is not available!')
            print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
           

    coolfile = cooler.Cooler(input + '::/resolutions/' + str(resol))
    modelstate = str(files('polaris').joinpath('model/sft_loop.pt'))
    _modelstate = torch.load(modelstate, map_location=device.type)
    parameters = _modelstate['parameters']

    if chrom is None:
        chrom =coolfile.chromnames
    else:
        chrom = chrom.split(',')
        
    # for rmchr in ['chrMT','MT','chrM','M','Y','chrY','X','chrX','chrW','W','chrZ','Z']: # 'Y','chrY','X','chrX'
    #     if rmchr in chrom:
    #         chrom.remove(rmchr)    
                  
    print(f"Analysing chroms: {chrom}")
    
    model = polarisnet(
            image_size=parameters['image_size'], 
            in_channels=parameters['in_channels'], 
            out_channels=parameters['out_channels'],
            embed_dim=parameters['embed_dim'], 
            depths=parameters['depths'],
            channels=parameters['channels'], 
            num_heads=parameters['num_heads'], 
            drop=parameters['drop'], 
            drop_path=parameters['drop_path'], 
            pos_embed=parameters['pos_embed']
    ).to(device)
    model.load_state_dict(_modelstate['model_state_dict'])
    if not cpu and len(gpu) > 1:
        model = nn.DataParallel(model, device_ids=gpu) 
    model.eval()
    
    print('\n********score START********')
   
    badc=[]
    chrom_ = tqdm(chrom, dynamic_ncols=True)
    for _chrom in chrom_:
        test_data = centerPredCoolDataset(coolfile,_chrom,max_distance_bin=max_distance//resol,w=image,step=center_size,s=sparsity,raw=raw)
        test_dataloader = DataLoader(test_data, batch_size=batchsize, shuffle=False,num_workers=workers,prefetch_factor=4,pin_memory=(gpu is not None))
        
        chrom_.desc = f"[Analyzing {_chrom} with {len(test_data)} submatrices]"
        
        if len(test_data) == 0:
            badc.append(_chrom)
            
        with torch.no_grad():
            for X in test_dataloader:
                bin_i,bin_j,targetX=X
                bin_i = bin_i*resol
                bin_j = bin_j*resol
                with autocast():
                    pred = torch.sigmoid(model(targetX.float().to(device)))[slice_obj_pred].flatten()
                    loop = torch.nonzero(pred>threshold).flatten().cpu()
                    prob = pred[loop].cpu().numpy().flatten().tolist()
                    frag1 = bin_i[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()
                    frag2 = bin_j[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()

                for i in range(len(frag1)):                    
                    # if frag1[i] < frag2[i] and frag2[i]-frag1[i] > 11*resol and frag2[i]-frag1[i] < max_distance:
                    if frag1[i] < frag2[i] and frag2[i]-frag1[i] < max_distance:
                        results.append([_chrom, frag1[i], frag1[i] + resol, 
                                        _chrom, frag2[i], frag2[i] + resol, 
                                        prob[i]])
    if len(badc)==len(chrom):
        raise ValueError("score FAILED :(\nThe '-s' value needs to be increased for more sparse data.")
    else:
        print(f'********score FINISHED********')  
        if len(badc)>0:
            print(f"路 But the size of {badc} are too small or their contact matrix are too sparse.\n路 You may need to check the data or run these chr respectively by increasing -s.")         
        print(f'********pool START********')  

    df = pd.DataFrame(results)
    loopNum,badcp,ccs = pool(df,distance_cutoff,resol,mindelta,threshold,output,radius)
    if len(badcp) == len(ccs):
        raise ValueError("pool FAILED :(\nPlease check input and mcool file to yield scoreFile. Or use higher '-s' value for more sparse mcool data.")
    else:
        print(f'********pool FINISHED********')
        if len(badcp) > 0:
            print(f"路 But the loop score of {badcp} are too sparse.\n路 You may need to check the mcool data or re-run polaris loop score by increasing -s.")         
    
    
    print(f'\npolaris loop pred FINISHED :)\n{loopNum} loops saved to {output}')
            
if __name__ == '__main__':
    pred()