Polaris / polaris /loopLF.py
rr-ss's picture
Upload folder using huggingface_hub
05ebc17 verified
raw
history blame
9.41 kB
import torch
import click
import cooler
import warnings
import numpy as np
from torch import nn
from tqdm import tqdm
from torch.cuda.amp import autocast
from importlib_resources import files
from polaris.utils.util_loop import bedpewriter
from polaris.model.polarisnet import polarisnet
from scipy.sparse import coo_matrix
from scipy.sparse import SparseEfficiencyWarning
warnings.filterwarnings("ignore", category=SparseEfficiencyWarning)
def getLocal(mat, i, jj, w, N):
if i >= 0 and jj >= 0 and i+w <= N and jj+w <= N:
mat = mat[i:i+w,jj:jj+w].toarray()
# print(f"global: {mat.shape}")
return mat[None,...]
# pad_width = ((up, down), (left, right))
slice_pos = [[i, i+w], [jj, jj+w]]
pad_width = [[0, 0], [0, 0]]
if i < 0:
pad_width[0][0] = -i
slice_pos[0][0] = 0
if jj < 0:
pad_width[1][0] = -jj
slice_pos[1][0] = 0
if i+w > N:
pad_width[0][1] = i+w-N
slice_pos[0][1] = N
if jj+w > N:
pad_width[1][1] = jj+w-N
slice_pos[1][1] = N
_mat = mat[slice_pos[0][0]:slice_pos[0][1],slice_pos[1][0]:slice_pos[1][1]].toarray()
padded_mat = np.pad(_mat, pad_width, mode='constant', constant_values=0)
# print(f"global: {padded_mat.shape}",slice_pos, pad_width)
return padded_mat[None,...]
def upperCoo2symm(row,col,data,N=None):
# print(np.max(row),np.max(col),N)
if N:
shape=(N,N)
else:
shape=(row.max() + 1,col.max() + 1)
sparse_matrix = coo_matrix((data, (row, col)), shape=shape)
symm = sparse_matrix + sparse_matrix.T
diagVal = symm.diagonal(0)/2
symm = symm.tocsr()
symm.setdiag(diagVal)
return symm
def processCoolFile(coolfile, cchrom, raw=False):
extent = coolfile.extent(cchrom)
N = extent[1] - extent[0]
if raw:
ccdata = coolfile.matrix(balance=False, sparse=True, as_pixels=True).fetch(cchrom)
v='count'
else:
ccdata = coolfile.matrix(balance=True, sparse=True, as_pixels=True).fetch(cchrom)
v='balanced'
ccdata['bin1_id'] -= extent[0]
ccdata['bin2_id'] -= extent[0]
ccdata['distance'] = ccdata['bin2_id'] - ccdata['bin1_id']
d_means = ccdata.groupby('distance')[v].transform('mean')
ccdata[v] = ccdata[v].fillna(0)
ccdata['oe'] = ccdata[v] / d_means
ccdata['oe'] = ccdata['oe'].fillna(0)
ccdata['oe'] = ccdata['oe'] / ccdata['oe'].max()
oeMat = upperCoo2symm(ccdata['bin1_id'].ravel(), ccdata['bin2_id'].ravel(), ccdata['oe'].ravel(), N)
return oeMat, N
@click.command()
@click.option('-b','--batchsize', type=int, default=128, help='Batch size [128]')
@click.option('-C','--cpu', type=bool, default=False, help='Use CPU [False]')
@click.option('-G','--gpu', type=str, default=None, help='Comma-separated GPU indices [auto select]')
@click.option('-c','--chrom', type=str, default=None, help='Comma separated chroms [all autosomes]')
@click.option('-t','--threshold', type=float, default=0.5, help='Loop Score Threshold [0.5]')
@click.option('-s','--sparsity', type=float, default=0.9, help='Allowed sparsity of submatrices [0.9]')
@click.option('-md','--max_distance', type=int, default=3000000, help='Max distance (bp) between contact pairs [3000000]')
@click.option('-r','--resol',type=int,default=5000,help ='Resolution [5000]')
@click.option('--raw',type=bool,default=False,help ='Raw matrix or balanced matrix')
@click.option('-i','--input', type=str,required=True,help='Hi-C contact map path')
@click.option('-o','--output', type=str,required=True,help='.bedpe file path to save loop candidates')
def scorelf(batchsize, cpu, gpu, chrom, threshold, sparsity, max_distance, resol, input, output, raw, image=224):
""" *development* Score Pixels for Very Large mcool (>30GB) ...
"""
print('\npolaris loop scorelf START :) ')
center_size = image // 2
start_idx = (image - center_size) // 2
end_idx = (image + center_size) // 2
slice_obj_pred = (slice(None), slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
slice_obj_coord = (slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
loopwriter = bedpewriter(output,resol,max_distance)
if cpu:
assert gpu is None, "\033[91m QAQ The CPU and GPU modes cannot be used simultaneously. Please check the command. \033[0m\n"
gpu = ['None']
device = torch.device("cpu")
print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
else:
if torch.cuda.is_available():
if gpu is not None:
print("Using the specified GPU: " + gpu)
gpu=[int(i) for i in gpu.split(',')]
device = torch.device(f"cuda:{gpu[0]}")
else:
gpuIdx = torch.cuda.current_device()
device = torch.device(gpuIdx)
print("Automatically selected GPU: " + str(gpuIdx))
gpu=[gpu]
else:
device = torch.device("cpu")
gpu = ['None']
cpu = True
print('GPU is not available!')
print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
coolfile = cooler.Cooler(input + '::/resolutions/' + str(resol))
modelstate = str(files('polaris').joinpath('model/sft_loop.pt'))
_modelstate = torch.load(modelstate, map_location=device.type)
parameters = _modelstate['parameters']
if chrom is None:
chrom =coolfile.chromnames
else:
chrom = chrom.split(',')
# for rmchr in ['chrMT','MT','chrM','M','Y','chrY','X','chrX','chrW','W','chrZ','Z']: # 'Y','chrY','X','chrX'
# if rmchr in chrom:
# chrom.remove(rmchr)
print(f"Analysing chroms: {chrom}")
model = polarisnet(
image_size=parameters['image_size'],
in_channels=parameters['in_channels'],
out_channels=parameters['out_channels'],
embed_dim=parameters['embed_dim'],
depths=parameters['depths'],
channels=parameters['channels'],
num_heads=parameters['num_heads'],
drop=parameters['drop'],
drop_path=parameters['drop_path'],
pos_embed=parameters['pos_embed']
).to(device)
model.load_state_dict(_modelstate['model_state_dict'])
if not cpu and len(gpu) > 1:
model = nn.DataParallel(model, device_ids=gpu)
model.eval()
badc=[]
chrom_ = tqdm(chrom, dynamic_ncols=True)
for _chrom in chrom_:
chrom_.desc = f"[Analyzing {_chrom}]"
oeMat, N = processCoolFile(coolfile, _chrom, raw)
start_point = -(image - center_size) // 2
joffset = np.repeat(np.linspace(0, image, image, endpoint=False, dtype=int)[np.newaxis, :], image, axis=0)
ioffset = np.repeat(np.linspace(0, image, image, endpoint=False, dtype=int)[:, np.newaxis], image, axis=1)
data, i_list, j_list = [], [], []
count=0
for i in range(start_point, N - image - start_point, center_size):
for j in range(0, max_distance//resol, center_size):
jj = j + i
# if jj + w <= N and i + w <= N:
_oeMat = getLocal(oeMat, i, jj, image, N)
if np.sum(_oeMat == 0) <= (image*image*sparsity):
data.append(_oeMat)
i_list.append(i + ioffset)
j_list.append(jj + joffset)
while len(data) >= batchsize or (i + center_size > N - image - start_point and len(data) > 0):
count += len(data)
bin_i = torch.tensor(np.stack(i_list[:batchsize], axis=0)).to(device)
bin_j = torch.tensor(np.stack(j_list[:batchsize], axis=0)).to(device)
targetX = torch.tensor(np.stack(data[:batchsize], axis=0)).to(device)
bin_i = bin_i*resol
bin_j = bin_j*resol
data = data[batchsize:]
i_list = i_list[batchsize:]
j_list = j_list[batchsize:]
# print(targetX.shape)
# print(bin_i.shape)
# print(bin_j.shape)
with torch.no_grad():
with autocast():
pred = torch.sigmoid(model(targetX.float().to(device)))[slice_obj_pred].flatten()
loop = torch.nonzero(pred>threshold).flatten().cpu()
prob = pred[loop].cpu().numpy().flatten().tolist()
frag1 = bin_i[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()
frag2 = bin_j[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()
loopwriter.write(_chrom,frag1,frag2,prob)
if count == 0:
badc.append(_chrom)
if len(badc)==len(chrom):
raise ValueError("polaris loop scorelf FAILED :( \nThe '-s' value needs to be increased for more sparse data.")
else:
print(f'\npolaris loop scorelf FINISHED :)\nLoopscore file saved at {output}')
if len(badc)>0:
print(f"But the size of {badc} are too small or their contact matrix are too sparse.\nYou may need to check the data or run these chr respectively by increasing -s.")
if __name__ == '__main__':
scorelf()