Upload folder using huggingface_hub
Browse files- __pycache__/polarisnet.cpython-39.pyc +0 -0
- polarisnet.py +526 -0
- sft_loop.pt +3 -0
__pycache__/polarisnet.cpython-39.pyc
ADDED
Binary file (14.4 kB). View file
|
|
polarisnet.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from operator import itemgetter
|
4 |
+
|
5 |
+
from typing import Type, Callable, Tuple, Optional, Set, List, Union
|
6 |
+
from timm.models.layers import drop_path, trunc_normal_, Mlp, DropPath
|
7 |
+
from timm.models.efficientnet_blocks import SqueezeExcite, DepthwiseSeparableConv
|
8 |
+
|
9 |
+
def exists(val):
|
10 |
+
|
11 |
+
return val is not None
|
12 |
+
|
13 |
+
def map_el_ind(arr, ind):
|
14 |
+
|
15 |
+
return list(map(itemgetter(ind), arr))
|
16 |
+
|
17 |
+
def sort_and_return_indices(arr):
|
18 |
+
|
19 |
+
indices = [ind for ind in range(len(arr))]
|
20 |
+
arr = zip(arr, indices)
|
21 |
+
arr = sorted(arr)
|
22 |
+
|
23 |
+
return map_el_ind(arr, 0), map_el_ind(arr, 1)
|
24 |
+
|
25 |
+
def calculate_permutations(num_dimensions, emb_dim):
|
26 |
+
total_dimensions = num_dimensions + 2
|
27 |
+
axial_dims = [ind for ind in range(1, total_dimensions) if ind != emb_dim]
|
28 |
+
|
29 |
+
permutations = []
|
30 |
+
|
31 |
+
for axial_dim in axial_dims:
|
32 |
+
last_two_dims = [axial_dim, emb_dim]
|
33 |
+
dims_rest = set(range(0, total_dimensions)) - set(last_two_dims)
|
34 |
+
permutation = [*dims_rest, *last_two_dims]
|
35 |
+
permutations.append(permutation)
|
36 |
+
|
37 |
+
return permutations
|
38 |
+
|
39 |
+
class ChanLayerNorm(nn.Module):
|
40 |
+
def __init__(self, dim, eps = 1e-5):
|
41 |
+
super().__init__()
|
42 |
+
self.eps = eps
|
43 |
+
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
|
44 |
+
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
|
48 |
+
std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt()
|
49 |
+
mean = torch.mean(x, dim = 1, keepdim = True)
|
50 |
+
return (x - mean) / (std + self.eps) * self.g + self.b
|
51 |
+
|
52 |
+
class PreNorm(nn.Module):
|
53 |
+
def __init__(self, dim, fn):
|
54 |
+
super().__init__()
|
55 |
+
self.fn = fn
|
56 |
+
self.norm = nn.LayerNorm(dim)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
|
60 |
+
x = self.norm(x)
|
61 |
+
|
62 |
+
return self.fn(x)
|
63 |
+
|
64 |
+
class PermuteToFrom(nn.Module):
|
65 |
+
|
66 |
+
def __init__(self, permutation, fn):
|
67 |
+
super().__init__()
|
68 |
+
|
69 |
+
self.fn = fn
|
70 |
+
_, inv_permutation = sort_and_return_indices(permutation)
|
71 |
+
self.permutation = permutation
|
72 |
+
self.inv_permutation = inv_permutation
|
73 |
+
|
74 |
+
def forward(self, x, **kwargs):
|
75 |
+
|
76 |
+
axial = x.permute(*self.permutation).contiguous()
|
77 |
+
shape = axial.shape
|
78 |
+
*_, t, d = shape
|
79 |
+
axial = axial.reshape(-1, t, d)
|
80 |
+
axial = self.fn(axial, **kwargs)
|
81 |
+
axial = axial.reshape(*shape)
|
82 |
+
axial = axial.permute(*self.inv_permutation).contiguous()
|
83 |
+
|
84 |
+
return axial
|
85 |
+
|
86 |
+
class AxialPositionalEmbedding(nn.Module):
|
87 |
+
def __init__(self, dim, shape, emb_dim_index = 1):
|
88 |
+
super().__init__()
|
89 |
+
parameters = []
|
90 |
+
total_dimensions = len(shape) + 2
|
91 |
+
ax_dim_indexes = [i for i in range(1, total_dimensions) if i != emb_dim_index]
|
92 |
+
|
93 |
+
self.num_axials = len(shape)
|
94 |
+
|
95 |
+
for i, (axial_dim, axial_dim_index) in enumerate(zip(shape, ax_dim_indexes)):
|
96 |
+
shape = [1] * total_dimensions
|
97 |
+
shape[emb_dim_index] = dim
|
98 |
+
shape[axial_dim_index] = axial_dim
|
99 |
+
parameter = nn.Parameter(torch.randn(*shape))
|
100 |
+
setattr(self, f'param_{i}', parameter)
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
|
104 |
+
for i in range(self.num_axials):
|
105 |
+
x = x + getattr(self, f'param_{i}')
|
106 |
+
|
107 |
+
return x
|
108 |
+
|
109 |
+
class SelfAttention(nn.Module):
|
110 |
+
def __init__(self, dim, heads, dim_heads=None, drop=0):
|
111 |
+
super().__init__()
|
112 |
+
self.dim_heads = (dim // heads) if dim_heads is None else dim_heads
|
113 |
+
dim_hidden = self.dim_heads * heads
|
114 |
+
self.drop_rate = drop
|
115 |
+
self.heads = heads
|
116 |
+
self.to_q = nn.Linear(dim, dim_hidden, bias = False)
|
117 |
+
self.to_kv = nn.Linear(dim, 2 * dim_hidden, bias = False)
|
118 |
+
self.to_out = nn.Linear(dim_hidden, dim)
|
119 |
+
self.proj_drop = DropPath(drop)
|
120 |
+
|
121 |
+
def forward(self, x, kv = None):
|
122 |
+
kv = x if kv is None else kv
|
123 |
+
q, k, v = (self.to_q(x), *self.to_kv(kv).chunk(2, dim=-1))
|
124 |
+
b, t, d, h, e = *q.shape, self.heads, self.dim_heads
|
125 |
+
merge_heads = lambda x: x.reshape(b, -1, h, e).transpose(1, 2).reshape(b * h, -1, e)
|
126 |
+
|
127 |
+
q, k, v = map(merge_heads, (q, k, v))
|
128 |
+
dots = torch.einsum('bie,bje->bij', q, k) * (e ** -0.5)
|
129 |
+
dots = dots.softmax(dim=-1)
|
130 |
+
|
131 |
+
out = torch.einsum('bij,bje->bie', dots, v)
|
132 |
+
out = out.reshape(b, h, -1, e).transpose(1, 2).reshape(b, -1, d)
|
133 |
+
out = self.to_out(out)
|
134 |
+
out = self.proj_drop(out)
|
135 |
+
|
136 |
+
return out
|
137 |
+
|
138 |
+
class AxialTransformerBlock(nn.Module):
|
139 |
+
def __init__(self,
|
140 |
+
dim,
|
141 |
+
axial_pos_emb_shape,
|
142 |
+
pos_embed,
|
143 |
+
heads = 8,
|
144 |
+
dim_heads = None,
|
145 |
+
drop = 0.,
|
146 |
+
drop_path_rate=0.,
|
147 |
+
):
|
148 |
+
super().__init__()
|
149 |
+
|
150 |
+
dim_index = 1
|
151 |
+
|
152 |
+
permutations = calculate_permutations(2, dim_index)
|
153 |
+
|
154 |
+
self.pos_emb = AxialPositionalEmbedding(dim, axial_pos_emb_shape, dim_index) if pos_embed else nn.Identity()
|
155 |
+
|
156 |
+
self.height_attn, self.width_attn = nn.ModuleList([PermuteToFrom(permutation, PreNorm(dim, SelfAttention(dim, heads, dim_heads, drop=drop))) for permutation in permutations])
|
157 |
+
|
158 |
+
self.FFN = nn.Sequential(
|
159 |
+
ChanLayerNorm(dim),
|
160 |
+
nn.Conv2d(dim, dim * 4, 3, padding = 1),
|
161 |
+
nn.GELU(),
|
162 |
+
DropPath(drop),
|
163 |
+
nn.Conv2d(dim * 4, dim, 3, padding = 1),
|
164 |
+
DropPath(drop),
|
165 |
+
|
166 |
+
ChanLayerNorm(dim),
|
167 |
+
nn.Conv2d(dim, dim * 4, 3, padding = 1),
|
168 |
+
nn.GELU(),
|
169 |
+
DropPath(drop),
|
170 |
+
nn.Conv2d(dim * 4, dim, 3, padding = 1),
|
171 |
+
DropPath(drop),
|
172 |
+
)
|
173 |
+
|
174 |
+
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
175 |
+
|
176 |
+
def forward(self, x):
|
177 |
+
|
178 |
+
x = self.pos_emb(x)
|
179 |
+
x = x + self.drop_path(self.height_attn(x))
|
180 |
+
x = x + self.drop_path(self.width_attn(x))
|
181 |
+
x = x + self.drop_path(self.FFN(x))
|
182 |
+
|
183 |
+
return x
|
184 |
+
|
185 |
+
def pair(t):
|
186 |
+
|
187 |
+
return t if isinstance(t, tuple) else (t, t)
|
188 |
+
|
189 |
+
def _gelu_ignore_parameters(*args, **kwargs) -> nn.Module:
|
190 |
+
|
191 |
+
activation = nn.GELU()
|
192 |
+
|
193 |
+
return activation
|
194 |
+
|
195 |
+
class DoubleConv(nn.Module):
|
196 |
+
|
197 |
+
def __init__(
|
198 |
+
self,
|
199 |
+
in_channels: int,
|
200 |
+
out_channels: int,
|
201 |
+
downscale: bool = False,
|
202 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
203 |
+
norm_layer: Type[nn.Module] = nn.BatchNorm2d,
|
204 |
+
drop_path: float = 0.,
|
205 |
+
) -> None:
|
206 |
+
|
207 |
+
super(DoubleConv, self).__init__()
|
208 |
+
|
209 |
+
self.drop_path_rate: float = drop_path
|
210 |
+
|
211 |
+
if act_layer == nn.GELU:
|
212 |
+
act_layer = _gelu_ignore_parameters
|
213 |
+
|
214 |
+
self.main_path = nn.Sequential(
|
215 |
+
norm_layer(in_channels),
|
216 |
+
nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=(1, 1)),
|
217 |
+
DepthwiseSeparableConv(in_chs=in_channels, out_chs=out_channels, stride=2 if downscale else 1,
|
218 |
+
act_layer=act_layer, norm_layer=norm_layer, drop_path_rate=drop_path),
|
219 |
+
SqueezeExcite(in_chs=out_channels, rd_ratio=0.25),
|
220 |
+
nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=(1, 1))
|
221 |
+
)
|
222 |
+
|
223 |
+
if downscale:
|
224 |
+
self.skip_path = nn.Sequential(
|
225 |
+
nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)),
|
226 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(1, 1))
|
227 |
+
)
|
228 |
+
else:
|
229 |
+
self.skip_path = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(1, 1))
|
230 |
+
|
231 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
232 |
+
|
233 |
+
output = self.main_path(x)
|
234 |
+
|
235 |
+
if self.drop_path_rate > 0.:
|
236 |
+
output = drop_path(output, self.drop_path_rate, self.training)
|
237 |
+
|
238 |
+
x = output + self.skip_path(x)
|
239 |
+
|
240 |
+
return x
|
241 |
+
|
242 |
+
|
243 |
+
class DeconvModule(nn.Module):
|
244 |
+
|
245 |
+
def __init__(self,
|
246 |
+
in_channels,
|
247 |
+
out_channels,
|
248 |
+
norm_layer=nn.BatchNorm2d,
|
249 |
+
act_layer=nn.Mish,
|
250 |
+
kernel_size=4,
|
251 |
+
scale_factor=2):
|
252 |
+
super(DeconvModule, self).__init__()
|
253 |
+
|
254 |
+
assert (kernel_size - scale_factor >= 0) and\
|
255 |
+
(kernel_size - scale_factor) % 2 == 0,\
|
256 |
+
f'kernel_size should be greater than or equal to scale_factor '\
|
257 |
+
f'and (kernel_size - scale_factor) should be even numbers, '\
|
258 |
+
f'while the kernel size is {kernel_size} and scale_factor is '\
|
259 |
+
f'{scale_factor}.'
|
260 |
+
|
261 |
+
stride = scale_factor
|
262 |
+
padding = (kernel_size - scale_factor) // 2
|
263 |
+
deconv = nn.ConvTranspose2d(
|
264 |
+
in_channels,
|
265 |
+
out_channels,
|
266 |
+
kernel_size=kernel_size,
|
267 |
+
stride=stride,
|
268 |
+
padding=padding)
|
269 |
+
|
270 |
+
norm = norm_layer(out_channels)
|
271 |
+
activate = act_layer()
|
272 |
+
self.deconv_upsamping = nn.Sequential(deconv, norm, activate)
|
273 |
+
|
274 |
+
def forward(self, x):
|
275 |
+
|
276 |
+
out = self.deconv_upsamping(x)
|
277 |
+
|
278 |
+
return out
|
279 |
+
|
280 |
+
class Stage(nn.Module):
|
281 |
+
|
282 |
+
def __init__(self,
|
283 |
+
image_size: int,
|
284 |
+
depth: int,
|
285 |
+
in_channels: int,
|
286 |
+
out_channels: int,
|
287 |
+
type_name: str,
|
288 |
+
pos_embed: bool,
|
289 |
+
num_heads: int = 32,
|
290 |
+
drop: float = 0.,
|
291 |
+
drop_path: Union[List[float], float] = 0.,
|
292 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
293 |
+
norm_layer: Type[nn.Module] = nn.BatchNorm2d,
|
294 |
+
):
|
295 |
+
super().__init__()
|
296 |
+
self.type_name = type_name
|
297 |
+
|
298 |
+
if self.type_name == "encoder":
|
299 |
+
|
300 |
+
self.conv = DoubleConv(
|
301 |
+
in_channels=in_channels,
|
302 |
+
out_channels=out_channels,
|
303 |
+
downscale=True,
|
304 |
+
act_layer=act_layer,
|
305 |
+
norm_layer=norm_layer,
|
306 |
+
drop_path=drop_path[0],
|
307 |
+
)
|
308 |
+
|
309 |
+
self.blocks = nn.Sequential(*[
|
310 |
+
AxialTransformerBlock(
|
311 |
+
dim=out_channels,
|
312 |
+
axial_pos_emb_shape=pair(image_size),
|
313 |
+
heads = num_heads,
|
314 |
+
drop = drop,
|
315 |
+
drop_path_rate=drop_path[index],
|
316 |
+
dim_heads = None,
|
317 |
+
pos_embed=pos_embed
|
318 |
+
)
|
319 |
+
for index in range(depth)
|
320 |
+
])
|
321 |
+
|
322 |
+
elif self.type_name == "decoder":
|
323 |
+
|
324 |
+
self.upsample = DeconvModule(
|
325 |
+
in_channels=in_channels,
|
326 |
+
out_channels=out_channels,
|
327 |
+
norm_layer=norm_layer,
|
328 |
+
act_layer=act_layer
|
329 |
+
)
|
330 |
+
|
331 |
+
self.conv = DoubleConv(
|
332 |
+
in_channels=in_channels,
|
333 |
+
out_channels=out_channels,
|
334 |
+
downscale=False,
|
335 |
+
act_layer=act_layer,
|
336 |
+
norm_layer=norm_layer,
|
337 |
+
drop_path=drop_path[0],
|
338 |
+
)
|
339 |
+
|
340 |
+
self.blocks = nn.Sequential(*[
|
341 |
+
AxialTransformerBlock(
|
342 |
+
dim=out_channels,
|
343 |
+
axial_pos_emb_shape=pair(image_size),
|
344 |
+
heads = num_heads,
|
345 |
+
drop = drop,
|
346 |
+
drop_path_rate=drop_path[index],
|
347 |
+
dim_heads = None,
|
348 |
+
pos_embed=pos_embed
|
349 |
+
)
|
350 |
+
for index in range(depth)
|
351 |
+
])
|
352 |
+
|
353 |
+
def forward(self, x, skip=None):
|
354 |
+
|
355 |
+
if self.type_name == "encoder":
|
356 |
+
x = self.conv(x)
|
357 |
+
x = self.blocks(x)
|
358 |
+
|
359 |
+
elif self.type_name == "decoder":
|
360 |
+
x = self.upsample(x)
|
361 |
+
x = torch.cat([skip, x], dim=1)
|
362 |
+
x = self.conv(x)
|
363 |
+
x = self.blocks(x)
|
364 |
+
|
365 |
+
return x
|
366 |
+
|
367 |
+
class FinalExpand(nn.Module):
|
368 |
+
def __init__(
|
369 |
+
self,
|
370 |
+
in_channels,
|
371 |
+
embed_dim,
|
372 |
+
out_channels,
|
373 |
+
norm_layer,
|
374 |
+
act_layer,
|
375 |
+
):
|
376 |
+
super().__init__()
|
377 |
+
self.upsample = DeconvModule(
|
378 |
+
in_channels=in_channels,
|
379 |
+
out_channels=embed_dim,
|
380 |
+
norm_layer=norm_layer,
|
381 |
+
act_layer=act_layer
|
382 |
+
)
|
383 |
+
|
384 |
+
self.conv = nn.Sequential(
|
385 |
+
nn.Conv2d(in_channels=embed_dim*2, out_channels=embed_dim, kernel_size=3, stride=1, padding=1),
|
386 |
+
act_layer(),
|
387 |
+
nn.Conv2d(in_channels=embed_dim, out_channels=embed_dim, kernel_size=3, stride=1, padding=1),
|
388 |
+
act_layer(),
|
389 |
+
)
|
390 |
+
|
391 |
+
def forward(self, skip, x):
|
392 |
+
x = self.upsample(x)
|
393 |
+
x = torch.cat([skip, x], dim=1)
|
394 |
+
x = self.conv(x)
|
395 |
+
|
396 |
+
return x
|
397 |
+
|
398 |
+
class polarisnet(nn.Module):
|
399 |
+
def __init__(
|
400 |
+
self,
|
401 |
+
image_size=224,
|
402 |
+
in_channels=1,
|
403 |
+
out_channels=1,
|
404 |
+
embed_dim=64,
|
405 |
+
depths=[2,2,2,2],
|
406 |
+
channels=[64,128,256,512],
|
407 |
+
num_heads = 16,
|
408 |
+
drop=0.,
|
409 |
+
drop_path=0.1,
|
410 |
+
act_layer=nn.GELU,
|
411 |
+
norm_layer=nn.BatchNorm2d,
|
412 |
+
pos_embed=False
|
413 |
+
):
|
414 |
+
|
415 |
+
super(polarisnet, self).__init__()
|
416 |
+
self.num_stages = len(depths)
|
417 |
+
self.num_features = channels[-1]
|
418 |
+
self.embed_dim = channels[0]
|
419 |
+
|
420 |
+
self.conv_first = nn.Sequential(
|
421 |
+
nn.Conv2d(in_channels=in_channels, out_channels=embed_dim, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
422 |
+
act_layer(),
|
423 |
+
nn.Conv2d(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
424 |
+
act_layer(),
|
425 |
+
)
|
426 |
+
|
427 |
+
drop_path = torch.linspace(0.0, drop_path, sum(depths)).tolist()
|
428 |
+
encoder_stages = []
|
429 |
+
|
430 |
+
for index in range(self.num_stages):
|
431 |
+
|
432 |
+
encoder_stages.append(
|
433 |
+
Stage(
|
434 |
+
image_size=image_size//(pow(2,1+index)),
|
435 |
+
depth=depths[index],
|
436 |
+
in_channels=embed_dim if index == 0 else channels[index - 1],
|
437 |
+
out_channels=channels[index],
|
438 |
+
num_heads=num_heads,
|
439 |
+
drop=drop,
|
440 |
+
drop_path=drop_path[sum(depths[:index]):sum(depths[:index + 1])],
|
441 |
+
act_layer=act_layer,
|
442 |
+
norm_layer=norm_layer,
|
443 |
+
type_name = "encoder",
|
444 |
+
pos_embed=pos_embed
|
445 |
+
)
|
446 |
+
)
|
447 |
+
|
448 |
+
self.encoder_stages = nn.ModuleList(encoder_stages)
|
449 |
+
|
450 |
+
decoder_stages = []
|
451 |
+
|
452 |
+
for index in range(self.num_stages-1):
|
453 |
+
|
454 |
+
decoder_stages.append(
|
455 |
+
Stage(
|
456 |
+
image_size=image_size//(pow(2,self.num_stages-index-1)),
|
457 |
+
depth=depths[self.num_stages - index - 2],
|
458 |
+
in_channels=channels[self.num_stages - index - 1],
|
459 |
+
out_channels=channels[self.num_stages - index - 2],
|
460 |
+
num_heads=num_heads,
|
461 |
+
drop=drop,
|
462 |
+
drop_path=drop_path[sum(depths[:(self.num_stages-2-index)]):sum(depths[:(self.num_stages-2-index) + 1])],
|
463 |
+
act_layer=act_layer,
|
464 |
+
norm_layer=norm_layer,
|
465 |
+
type_name = "decoder",
|
466 |
+
pos_embed=pos_embed
|
467 |
+
)
|
468 |
+
)
|
469 |
+
|
470 |
+
self.decoder_stages = nn.ModuleList(decoder_stages)
|
471 |
+
|
472 |
+
self.norm = norm_layer(self.num_features)
|
473 |
+
self.norm_up= norm_layer(self.embed_dim)
|
474 |
+
|
475 |
+
self.up = FinalExpand(
|
476 |
+
in_channels=channels[0],
|
477 |
+
embed_dim=embed_dim,
|
478 |
+
out_channels=embed_dim,
|
479 |
+
norm_layer=norm_layer,
|
480 |
+
act_layer=act_layer
|
481 |
+
)
|
482 |
+
|
483 |
+
self.output = nn.Conv2d(embed_dim, out_channels, kernel_size=3, padding=1)
|
484 |
+
|
485 |
+
def encoder_forward(self, x: torch.Tensor) -> torch.Tensor:
|
486 |
+
|
487 |
+
outs = []
|
488 |
+
x = self.conv_first(x)
|
489 |
+
|
490 |
+
for stage in self.encoder_stages:
|
491 |
+
outs.append(x)
|
492 |
+
x = stage(x)
|
493 |
+
|
494 |
+
x = self.norm(x)
|
495 |
+
|
496 |
+
return x, outs
|
497 |
+
|
498 |
+
def decoder_forward(self, x: torch.Tensor, x_downsample: list) -> torch.Tensor:
|
499 |
+
|
500 |
+
for inx, stage in enumerate(self.decoder_stages):
|
501 |
+
x = stage(x, x_downsample[len(x_downsample)-1-inx])
|
502 |
+
|
503 |
+
x = self.norm_up(x)
|
504 |
+
|
505 |
+
return x
|
506 |
+
|
507 |
+
def up_x4(self, x: torch.Tensor, x_downsample: list):
|
508 |
+
x = self.up(x_downsample[0],x)
|
509 |
+
x = self.output(x)
|
510 |
+
|
511 |
+
return x
|
512 |
+
|
513 |
+
def forward(self, x):
|
514 |
+
x, x_downsample = self.encoder_forward(x)
|
515 |
+
x = self.decoder_forward(x,x_downsample)
|
516 |
+
x = self.up_x4(x,x_downsample)
|
517 |
+
|
518 |
+
return x
|
519 |
+
|
520 |
+
if __name__ == '__main__':
|
521 |
+
net = polarisnet(in_channels=1, embed_dim=64, pos_embed=True).cuda()
|
522 |
+
|
523 |
+
X = torch.randn(5, 1, 224, 224).cuda()
|
524 |
+
y = net(X)
|
525 |
+
print(y.shape)
|
526 |
+
|
sft_loop.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cae9e9a28e5c3ff0d328934c066d275371d5301db084a914431198134f66ada2
|
3 |
+
size 547572280
|