rshei's picture
layoutlmv3-finetuned-cord_100
fe17b6b
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - cord-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord_100
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cord-layoutlmv3
          type: cord-layoutlmv3
          config: cord
          split: test
          args: cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9243884358784284
          - name: Recall
            type: recall
            value: 0.9333832335329342
          - name: F1
            type: f1
            value: 0.9288640595903166
          - name: Accuracy
            type: accuracy
            value: 0.9363327674023769

layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3467
  • Precision: 0.9244
  • Recall: 0.9334
  • F1: 0.9289
  • Accuracy: 0.9363

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 4.17 250 0.5174 0.8469 0.8735 0.8600 0.8790
0.5511 8.33 500 0.3975 0.8999 0.9147 0.9072 0.9194
0.5511 12.5 750 0.3872 0.9015 0.9184 0.9099 0.9189
0.1802 16.67 1000 0.3416 0.9180 0.9296 0.9238 0.9338
0.1802 20.83 1250 0.3311 0.9159 0.9289 0.9223 0.9359
0.0836 25.0 1500 0.3457 0.9192 0.9281 0.9236 0.9334
0.0836 29.17 1750 0.3347 0.9202 0.9319 0.9260 0.9291
0.0473 33.33 2000 0.3677 0.9194 0.9304 0.9249 0.9253
0.0473 37.5 2250 0.3433 0.9279 0.9341 0.9310 0.9376
0.0342 41.67 2500 0.3467 0.9244 0.9334 0.9289 0.9363

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3