ryan_model314

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the beans dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2532
  • Na Accuracy: 0.947
  • Ordinal Accuracy: 0.5952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Na Accuracy Ordinal Accuracy
0.3042 0.16 100 0.3673 0.928 0.4671
0.2904 0.32 200 0.2977 0.933 0.5790
0.2648 0.48 300 0.2831 0.944 0.5940
0.3036 0.64 400 0.2776 0.949 0.5871
0.2656 0.8 500 0.2846 0.931 0.6101
0.2954 0.96 600 0.2532 0.947 0.5952
0.1991 1.12 700 0.2603 0.942 0.6078
0.1678 1.28 800 0.2905 0.942 0.6332
0.2514 1.44 900 0.2566 0.94 0.6090
0.2328 1.6 1000 0.2884 0.94 0.5617
0.1826 1.76 1100 0.2870 0.943 0.6044
0.2013 1.92 1200 0.2937 0.941 0.5905
0.0663 2.08 1300 0.2954 0.938 0.6251
0.1503 2.24 1400 0.3188 0.937 0.5986
0.0611 2.4 1500 0.3393 0.945 0.5998
0.0743 2.56 1600 0.3182 0.942 0.6482
0.0908 2.72 1700 0.3332 0.942 0.6482
0.1108 2.88 1800 0.3256 0.943 0.6459
0.0786 3.04 1900 0.3222 0.944 0.6540
0.043 3.2 2000 0.3501 0.941 0.6482
0.0472 3.36 2100 0.3455 0.943 0.6609
0.032 3.52 2200 0.3562 0.94 0.6517
0.0434 3.68 2300 0.3499 0.94 0.6597
0.0341 3.84 2400 0.3611 0.94 0.6482
0.0305 4.0 2500 0.3635 0.939 0.6609

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rshrott/ryan_model314

Finetuned
(1792)
this model