metadata
inference: false
language: pt
datasets:
- ruanchaves/faquad-nli
BERTimbau base for Question Answering
This is the neuralmind/bert-base-portuguese-cased model finetuned for Text Simplification with the FaQUaD-NLI dataset. This model is suitable for Portuguese.
Labels:
- 0 : The answer is not suitable for the provided question.
- 1 : The answer is suitable for the provided question.
Full classification example
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
import numpy as np
import torch
from scipy.special import softmax
model_name = "ruanchaves/bert-base-portuguese-cased-faquad-nli"
s1 = "Qual a montanha mais alta do mundo?"
s2 = "Monte Everest é a montanha mais alta do mundo."
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
model_input = tokenizer(*([s1], [s2]), padding=True, return_tensors="pt")
with torch.no_grad():
output = model(**model_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
l = config.id2label[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) Label: {l} Score: {np.round(float(s), 4)}")
Citation
Our research is ongoing, and we are currently working on describing our experiments in a paper, which will be published soon. In the meanwhile, if you would like to cite our work or models before the publication of the paper, please cite our GitHub repository:
@software{Chaves_Rodrigues_eplm_2023,
author = {Chaves Rodrigues, Ruan and Tanti, Marc and Agerri, Rodrigo},
doi = {10.5281/zenodo.7781848},
month = {3},
title = {{Evaluation of Portuguese Language Models}},
url = {https://github.com/ruanchaves/eplm},
version = {1.0.0},
year = {2023}
}