emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2493
  • Accuracy: 0.5687

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0679 1.0 10 2.0574 0.175
2.0366 2.0 20 2.0083 0.2812
1.9469 3.0 30 1.9119 0.35
1.8166 4.0 40 1.7702 0.4125
1.6821 5.0 50 1.6176 0.45
1.5587 6.0 60 1.5747 0.425
1.4703 7.0 70 1.4444 0.5375
1.4032 8.0 80 1.4226 0.5312
1.3367 9.0 90 1.3937 0.5188
1.2889 10.0 100 1.3186 0.5375
1.2136 11.0 110 1.3313 0.55
1.1745 12.0 120 1.3027 0.5312
1.1477 13.0 130 1.3004 0.5375
1.1414 14.0 140 1.2442 0.55
1.1202 15.0 150 1.2957 0.5062
1.0923 16.0 160 1.3045 0.5125
1.0765 17.0 170 1.2533 0.5563
1.0678 18.0 180 1.2392 0.5437
1.0837 19.0 190 1.2750 0.5375
1.0562 20.0 200 1.2275 0.5625

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
251
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ruben09/emotion_classification

Finetuned
(1773)
this model

Evaluation results