File size: 6,013 Bytes
9b78e91
b588fd1
952df31
 
 
c5f7cc1
 
 
 
 
952df31
 
 
 
 
 
 
 
 
 
 
 
9b78e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b588fd1
9b78e91
c5f7cc1
440b707
9b78e91
952df31
c5f7cc1
 
 
 
 
 
 
 
 
 
 
 
 
952df31
c5f7cc1
9b78e91
c5f7cc1
 
 
 
 
 
 
952df31
c5f7cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b78e91
 
c5f7cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952df31
 
590ca25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5f7cc1
 
9b78e91
c5f7cc1
952df31
 
c5f7cc1
952df31
c5f7cc1
 
 
 
 
 
952df31
c5f7cc1
 
 
 
 
952df31
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

---
language: 
  - pt
thumbnail: "Portugues SBERT for the Legal Domain"
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- transformers
datasets:
- assin
- assin2
- stsb_multi_mt

widget:
- source_sentence: "O advogado apresentou as provas ao juíz."
  sentences:
    - "O juíz leu as provas."
    - "O juíz leu o recurso."
    - "O juíz atirou uma pedra."
  example_title: "Example 1"
model-index:
- name: BERTimbau
  results:
  - task:
      name: STS
      type: STS
    metrics:
      - name: Pearson Correlation - assin Dataset
        type: Pearson Correlation
        value: 0.74874 
      - name: Pearson Correlation - assin2 Dataset
        type: Pearson Correlation
        value: 0.79532
      - name: Pearson Correlation - stsb_multi_mt pt Dataset
        type: Pearson Correlation
        value: 0.82254 
---
# rufimelo/Legal-BERTimbau-sts-base-ma

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
rufimelo/rufimelo/Legal-BERTimbau-sts-base-ma is based on Legal-BERTimbau-base which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) alrge.
It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets.

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]

model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-base-ma')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)


```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma')
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```


## Evaluation Results STS


| Model| Assin | Assin2|stsb_multi_mt pt| avg|
| ---------------------------------------- | ---------- | ---------- |---------- |---------- |
| Legal-BERTimbau-sts-base| 0.71457| 0.73545 | 0.72383|0.72462|
| Legal-BERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 |0.78886|
| Legal-BERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178|0.79307|
| Legal-BERTimbau-sts-large| 0.76629| 0.82357 | 0.79120|0.79369|
| Legal-BERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 |0.79715|
| Legal-BERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608|0.80142|
| Legal-BERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261| 0.81863|
| Legal-BERTimbau-sts-large-ma-v3| 0.7749| **0.8470**| 0.8364| **0.81943**|
| ---------------------------------------- | ---------- |---------- |---------- |---------- |
| BERTimbau base Fine-tuned for STS|**0.78455** | 0.80626|0.82841|0.80640|
| BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784|0.81245|
| ---------------------------------------- | ---------- |---------- |---------- |---------- |
| paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 |0.78429|
| paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831   |**0.84575**|0.80682|
## Training

rufimelo/Legal-BERTimbau-sts-base-ma is based on Legal-BERTimbau-base which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) base.

Firstly, due to the lack of portuguese datasets, it was trained using multilingual knowledge distillation. 
For the Multilingual Knowledge Distillation process, the teacher model was 'sentence-transformers/paraphrase-xlm-r-multilingual-v1', the supposed supported language as English and the language to learn was portuguese.

It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2) and [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets.


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
```

## Citing & Authors

If you use this work, please cite BERTimbau's work:

```bibtex
@inproceedings{souza2020bertimbau,
  author    = {F{\'a}bio Souza and
               Rodrigo Nogueira and
               Roberto Lotufo},
  title     = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
  booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
  year      = {2020}
}
```