|
--- |
|
license: apache-2.0 |
|
base_model: rujengelal/nepali_t5 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: nepali_t5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nepali_t5 |
|
|
|
This model is a fine-tuned version of [rujengelal/nepali_t5](https://huggingface.co/rujengelal/nepali_t5) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6633 |
|
- Bleu: 6.3134 |
|
- Gen Len: 15.9835 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:------:|:---------------:|:------:|:-------:| |
|
| 3.0928 | 1.0 | 17734 | 2.8330 | 5.4935 | 15.9053 | |
|
| 3.101 | 2.0 | 35468 | 2.8127 | 5.5409 | 15.8787 | |
|
| 3.0165 | 3.0 | 53202 | 2.7814 | 5.6622 | 15.9238 | |
|
| 2.9973 | 4.0 | 70936 | 2.7532 | 5.8108 | 15.8996 | |
|
| 2.8885 | 5.0 | 88670 | 2.7294 | 5.9077 | 15.8805 | |
|
| 2.8114 | 6.0 | 106404 | 2.7074 | 6.1401 | 15.9749 | |
|
| 2.7791 | 7.0 | 124138 | 2.6905 | 6.1567 | 15.9531 | |
|
| 2.7729 | 8.0 | 141872 | 2.6782 | 6.1865 | 15.9688 | |
|
| 2.7128 | 9.0 | 159606 | 2.6699 | 6.2233 | 16.063 | |
|
| 2.7398 | 10.0 | 177340 | 2.6633 | 6.3134 | 15.9835 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|