deepthought-8b-llama-v0.01-alpha / deepthought_inference.py
DhanOS's picture
Added simple inference script
9d83cd3 verified
raw
history blame
5.68 kB
import logging
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # Suppress TensorFlow logging
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0" # Disable oneDNN optimizations
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import warnings
warnings.filterwarnings("ignore", message="A NumPy version >=")
logging.basicConfig(level=logging.ERROR)
logging.getLogger("transformers").setLevel(logging.ERROR)
# Check if Flash Attention is available
try:
import flash_attn # noqa: F401
flash_attn_exists = True
except ImportError:
flash_attn_exists = False
# Define the DeepthoughtModel class
class DeepthoughtModel:
def __init__(self):
self.model_name = "ruliad/deepthought-8b-llama-v0.01-alpha"
print(f"Loading model: {self.model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
add_bos_token=False,
trust_remote_code=True,
padding="left",
torch_dtype=torch.bfloat16,
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation=("flash_attention_2" if flash_attn_exists else "default"),
use_cache=True,
trust_remote_code=True,
)
# Helper method to generate the initial prompt
def _get_initial_prompt(
self, query: str, system_message: str = None
) -> str:
'''Helper method to generate the initial prompt format.'''
if system_message is None:
system_message = '''You are a superintelligent AI system, capable of comprehensive reasoning. When provided with <reasoning>, you must provide your logical reasoning chain to solve the user query. Be verbose with your outputs.'''
return f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{query}<|im_end|>
<|im_start|>reasoning
<reasoning>
[
{{
"step": 1,
"type": "problem_understanding",
"thought": "'''
# Method to generate reasoning given the prompt
def generate_reasoning(self, query: str, system_message: str = None) -> dict:
print('Generating reasoning...')
# Get and print prompt
prompt = self._get_initial_prompt(query, system_message)
print(prompt, end='')
# Tokenize the prompt
inputs = self.tokenizer(prompt, return_tensors='pt').input_ids.to(self.model.device)
try:
# Generate and stream reasoning
outputs = self.model.generate(
input_ids=inputs,
max_new_tokens=800,
do_sample=True,
temperature=0.2,
top_k=200,
top_p=1.0,
eos_token_id=self.tokenizer.eos_token_id,
streamer=TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True),
)
# Get the reasoning string
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return {
'raw_output': generated_text,
'success': True,
'error': None,
'initial_prompt': prompt,
}
except Exception as e:
logging.error(f'Error during generation: {e}')
return {
'raw_output': None,
'success': False,
'error': str(e),
'initial_prompt': None,
}
# Method to generate the final output
def generate_final_output(self, reasoning_output: dict) -> dict:
# Get the reasoning text and create the full prompt for the final output
reasoning_text = reasoning_output['raw_output'].replace(reasoning_output['initial_prompt'], '')
full_prompt = f'''{reasoning_text}<|im_end|>
<|im_start|>assistant
'''
print('Generating final response...')
# Tokenize the full prompt
inputs = self.tokenizer(full_prompt, return_tensors='pt').input_ids.to(self.model.device)
try:
# Generate and stream the final output
_ = self.model.generate(
input_ids=inputs,
max_new_tokens=400,
do_sample=True,
temperature=0.1,
top_k=50,
top_p=0.9,
eos_token_id=self.tokenizer.eos_token_id,
streamer=TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
)
return {'success': True, 'error': None}
except Exception as e:
logging.error(f'Error during final generation: {e}')
return {'success': False, 'error': str(e)}
def main():
model = DeepthoughtModel()
# Test queries
queries = [
"We want you to tell us the answer to life, the universe and everything. We'd really like an answer, something simple.",
]
# Process each query at a time (because we are streaming)
for query in queries:
print(f'\nProcessing query: {query}')
print('='*50)
# Reasoning
reasoning_result = model.generate_reasoning(query)
if not reasoning_result['success']:
print(f'\nError in reasoning: {reasoning_result["error"]}')
print('='*50)
continue
print('-'*50)
# Final output
final_result = model.generate_final_output(reasoning_result)
if not final_result['success']:
print(f'\nError in final generation: {final_result["error"]}')
print('='*50)
if __name__ == '__main__':
main()