ruslandev's picture
Create README.md
9aa3ff1 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - llama
  - trl
base_model: unsloth/llama-3-70b-bnb-4bit
datasets:
  - lightblue/tagengo-gpt4

Uploaded model

  • Developed by: ruslandev
  • License: apache-2.0
  • Finetuned from model : unsloth/llama-3-70b-bnb-4bit

This model is finetuned on the Tagengo dataset. Please note - this model has been created for educational purposes and it needs further training/fine tuning.

How to use

The easiest way to use this model on your own computer is to use the GGUF version of this model (ruslandev/llama-3-70b-tagengo-GGUF) using a program such as llama.cpp. If you want to use this model directly with the Huggingface Transformers stack, I recommend using my framework gptchain.

git clone https://github.com/RuslanPeresy/gptchain.git
cd gptchain
pip install -r requirements-train.txt
python gptchain.py chat -m ruslandev/llama-3-70b-tagengo \
    --chatml true \
    -q '[{"from": "human", "value": "Из чего состоит нейронная сеть?"}]'

Training

gptchain framework has been used for training.

python gptchain.py train -m unsloth/llama-3-70b-bnb-4bit \
    -dn tagengo_gpt4 \
    -sp checkpoints/llama-3-70b-tagengo \
    -hf llama-3-70b-tagengo \
    --max-steps 2400

Training hyperparameters

  • learning_rate: 2e-4
  • seed: 3407
  • gradient_accumulation_steps: 4
  • per_device_train_batch_size: 2
  • optimizer: adamw_8bit
  • lr_scheduler_type: linear
  • warmup_steps: 5
  • max_steps: 2400
  • weight_decay: 0.01

Training results

wandb report

2400 steps took 7 hours on a single H100