|
--- |
|
language: |
|
- en |
|
- it |
|
license: apache-2.0 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- ruslanmv |
|
- llama |
|
- trl |
|
- sft |
|
--- |
|
# Meta-Llama 3.1 8B Text-to-SQL GPTQ Model |
|
|
|
This repository provides a quantized 8-billion-parameter Meta-Llama model fine-tuned for text-to-SQL tasks. The model is optimized with GPTQ quantization for efficient inference. Below you'll find instructions to load, use, and fine-tune the model. |
|
|
|
## Model Details |
|
|
|
- **Model Size**: 8B |
|
- **Quantization**: GPTQ (4-bit) |
|
- **Languages Supported**: English, Italian |
|
- **Task**: Text-to-SQL generation |
|
- **License**: Apache 2.0 |
|
|
|
## Installation Requirements |
|
|
|
Before using the model, ensure that you have the following dependencies installed. We recommend using the same versions to avoid any compatibility issues. |
|
|
|
```bash |
|
# Install the required PyTorch version with CUDA support (ensure CUDA 12.1 is installed) |
|
!pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121 |
|
|
|
# Install AutoGPTQ for quantized model handling |
|
!pip install auto-gptq --no-build-isolation |
|
|
|
# Install Optimum for model optimization |
|
!pip install optimum |
|
``` |
|
|
|
After installing the dependencies, reset your instance to ensure everything works correctly. |
|
|
|
## Loading the Model |
|
|
|
To load the quantized Meta-Llama 3.1 model and use it for text-to-SQL tasks, use the following Python code: |
|
|
|
```python |
|
from transformers import AutoTokenizer, pipeline |
|
from auto_gptq import AutoGPTQForCausalLM |
|
import torch |
|
|
|
# Define the Alpaca-style prompt template |
|
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{} |
|
|
|
### Input: |
|
{} |
|
|
|
### Response: |
|
""" |
|
|
|
# Model directory and tokenizer |
|
quantized_model_dir = "meta-llama-8b-quantized-4bit" # Path where quantized model is saved |
|
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir) |
|
|
|
# Load the quantized model |
|
model = AutoGPTQForCausalLM.from_quantized( |
|
quantized_model_dir, |
|
device_map="auto", # Automatically map the model to the available device (GPU or CPU) |
|
torch_dtype=torch.float16, # Ensure FP16 for efficiency |
|
use_safetensors=True # If you saved the model using safetensors format, set this to True |
|
) |
|
|
|
# Set up the text generation pipeline without specifying the device |
|
pipeline = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer |
|
) |
|
|
|
# Function to generate SQL query from input text using the Alpaca prompt |
|
def generate_sql(input_text): |
|
# Format the prompt |
|
prompt = alpaca_prompt.format( |
|
"Provide the SQL query", |
|
input_text |
|
) |
|
|
|
# Generate the response using the pipeline |
|
generated_text = pipeline( |
|
prompt, |
|
max_length=200, |
|
eos_token_id=tokenizer.eos_token_id |
|
)[0]["generated_text"] |
|
|
|
# Clean the output by removing the prompt and any extra newlines |
|
cleaned_output = generated_text.replace(prompt, '').strip() |
|
|
|
return cleaned_output |
|
|
|
# Example usage |
|
italian_input = "Seleziona tutte le colonne della tabella table1 dove la colonna anni è uguale a 2020" |
|
sql_query = generate_sql(italian_input) |
|
print(sql_query) |
|
``` |
|
|
|
## Example Usage |
|
|
|
The example script shows how to generate SQL queries from natural language text. Simply provide a request in Italian or English, and the model will generate an appropriate SQL query. |
|
|
|
Example input: |
|
|
|
```python |
|
italian_input = "Seleziona tutte le colonne della tabella table1 dove la colonna anni è uguale a 2020" |
|
sql_query = generate_sql(italian_input) |
|
print(sql_query) |
|
``` |
|
|
|
Example output: |
|
|
|
```sql |
|
SELECT * FROM table1 WHERE anni = 2020; |
|
``` |
|
|
|
## Model Tags |
|
|
|
- **text-generation-inference** |
|
- **transformers** |
|
- **llama** |
|
- **trl** |
|
- **sft** |
|
|
|
## License |
|
|
|
This model is released under the [Apache License 2.0](LICENSE). |
|
|