Mixtral_R2_v0 / README.md
rwatler's picture
R2aillc/mixtral-8x7bi-ffiec-finetuned
7ff75c1 verified
|
raw
history blame
2.66 kB
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model-index:
- name: Mixtral_R2_v0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mixtral_R2_v0
This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7671
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.03
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.0101 | 1.0 | 18 | 2.1741 |
| 2.1612 | 2.0 | 36 | 1.5962 |
| 1.6591 | 3.0 | 54 | 1.4202 |
| 1.4985 | 4.0 | 72 | 1.3035 |
| 1.3585 | 5.0 | 90 | 1.1977 |
| 1.294 | 6.0 | 108 | 1.0993 |
| 1.1823 | 7.0 | 126 | 1.0139 |
| 1.0983 | 8.0 | 144 | 0.9641 |
| 1.0371 | 9.0 | 162 | 0.9293 |
| 0.9868 | 10.0 | 180 | 0.8961 |
| 0.9535 | 11.0 | 198 | 0.8655 |
| 0.9259 | 12.0 | 216 | 0.8358 |
| 0.882 | 13.0 | 234 | 0.8067 |
| 0.8472 | 14.0 | 252 | 0.7938 |
| 0.8484 | 15.0 | 270 | 0.7872 |
| 0.8215 | 16.0 | 288 | 0.7826 |
| 0.8167 | 17.0 | 306 | 0.7779 |
| 0.8199 | 18.0 | 324 | 0.7751 |
| 0.8042 | 19.0 | 342 | 0.7730 |
| 0.8186 | 20.0 | 360 | 0.7710 |
| 0.794 | 21.0 | 378 | 0.7698 |
| 0.7958 | 22.0 | 396 | 0.7685 |
| 0.7858 | 23.0 | 414 | 0.7677 |
| 0.7857 | 24.0 | 432 | 0.7671 |
| 0.7843 | 25.0 | 450 | 0.7671 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0