Ross Wightman

rwightman

AI & ML interests

Computer vision, transfer learning, semi/self supervised learning, robotics.

Recent Activity

liked a model 1 day ago
microsoft/phi-4
View all activity

Articles

Organizations

Hugging Face's profile picture PyTorch Image Models's profile picture Spaces-explorers's profile picture Flax Community's profile picture LAION eV's profile picture Pixel Parsing's profile picture

Posts 13

view post
Post
1008
New timm 1.0.13 and OpenCLIP 2.30.0 releases to start the year. Both modest but worthwhile updates.

timm added a number of new model weights, supporting loading of:
* PaliGemma2 encoders (ported from google/paligemma-2-release-67500e1e1dbfdd4dee27ba48)
* AIMv-2 encoders (ported from apple/aimv2-6720fe1558d94c7805f7688c)

A few higher resolution 384x384 ConvNeXt-Nano ImageNet-12k pretrain & finetunes. See other changes here: https://github.com/huggingface/pytorch-image-models/releases/tag/v1.0.13

And support added in both OpenCLIP and timm for two CLIP models that were missed. The DFN L/14 is 🔥
* DFN CLIP L/14 w/ 39B samples seen - apple/DFN2B-CLIP-ViT-L-14-39B, timm/vit_large_patch14_clip_224.dfn2b_s39b
* MetaCLIP H/14 (altogether) - timm/vit_huge_patch14_clip_224.metaclip_altogether

And last, ~70-80 models that were relying on timm remapping from OpenCLIP got their own timm hub instances to allow use with the upcoming Transformers TimmWrapperModel
view post
Post
1383
There's a new timm release, v 1.0.12, with a focus on optimizers. The optimizer factory has been refactored, there's now a timm.optim.list_optimizers() and new way to register optimizers and their attributes. As always you can use an timm optimizer like a torch one, just replace torch.optim with timm.optim

New optimizers include:
* AdafactorBigVision - adfactorbv
* ADOPT - adopt / adoptw (decoupled decay)
* MARS - mars
* LaProp - laprop
* Cautious Optimizers - a modification to all of the above, prefix with c as well as cadamw, cnadamw, csgdw, clamb, crmsproptf

I shared some caution comparisons in this model repo: rwightman/timm-optim-caution

For details, references, see the code: https://github.com/huggingface/pytorch-image-models/tree/main/timm/optim