clip-vit-l-14-pmc-finetuned
This model is a fine-tuned version of openai/clip-vit-large-patch14 on an pmc_oa (https://huggingface.co/datasets/axiong/pmc_oa) dataset. It achieves the following results on the evaluation set:
- Loss: 1.0125
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3
finetune this model use the script from run_clip.py (https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text)
python -W ignore run_clip.py --model_name_or_path openai/clip-vit-large-patch14 \
--output_dir ./clip-vit-l-14-pmc-finetuned \
--train_file data/pmc_roco_train.csv \
--validation_file data/pmc_roco_valid.csv \
--image_column image --caption_column caption \
--max_seq_length 77 \
--do_train --do_eval \
--per_device_train_batch_size 16 --per_device_eval_batch_size 8 \
--remove_unused_columns=False \
--learning_rate="5e-5" --warmup_steps="0" --weight_decay 0.1 \
--overwrite_output_dir \
--num_train_epochs 10 \
--logging_dir ./pmc_vit_logs \
--save_total_limit 2 \
--report_to tensorboard
usage
from PIL import Image
import requests
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("ryanyip7777/pmc_vit-l-14_hf")
processor = CLIPProcessor.from_pretrained("ryanyip7777/pmc_vit-l-14_hf")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
- Downloads last month
- 106
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for ryanyip7777/pmc_vit-l-14_hf
Base model
openai/clip-vit-large-patch14