Text2Text Generation
Transformers
Safetensors
mt5
Inference Endpoints
mt0-xl-detox-orpo / README.md
lmeribal's picture
Update README.md
95c22d4 verified
|
raw
history blame
2.24 kB
---
license: cc-by-4.0
language:
- am
- ru
- en
- uk
- de
- ar
- zh
- es
- hi
datasets:
- s-nlp/ru_paradetox
- s-nlp/paradetox
- textdetox/multilingual_paradetox
library_name: transformers
pipeline_tag: text2text-generation
---
# mT0-XL-detox-orpo
**Resources**:
* [Paper]()
* [GitHub with training scripts and data](https://github.com/s-nlp/multilingual-transformer-detoxification)
## Model Information
This is a multilingual 3.7B text detoxification model built on [TextDetox 2024 shared task](https://pan.webis.de/clef24/pan24-web/text-detoxification.html) based on [mT0-xl](https://huggingface.co/bigscience/mt0-xl). The model was trained in a two-step setup: the first step is full fine-tuning on different parallel text detoxification datasets, and the second step is ORPO alignment on a self-annotated preference dataset collected using toxicity and similarity classifiers. See the paper for more details.
## Example usage
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained('s-nlp/mt0-xl-detox-orpo', device_map="auto")
tokenizer = AutoTokenizer.from_pretrained('s-nlp/mt0-xl-detox-orpo')
LANG_PROMPTS = {
'zh': '排毒:',
'es': 'Desintoxicar: ',
'ru': 'Детоксифицируй: ',
'ar': 'إزالة السموم: ',
'hi': 'विषहरण: ',
'uk': 'Детоксифікуй: ',
'de': 'Entgiften: ',
'am': 'መርዝ መርዝ: ',
'en': 'Detoxify: ',
}
def detoxify(text, lang, model, tokenizer):
encodings = tokenizer(LANG_PROMPTS[lang] + text, return_tensors='pt').to(model.device)
outputs = model.generate(**encodings.to(model.device),
max_length=128,
num_beams=10,
no_repeat_ngram_size=3,
repetition_penalty=1.2,
num_beam_groups=5,
diversity_penalty=2.5,
num_return_sequences=5,
early_stopping=True,
)
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
```
## Human evaluation
## Automatic evaluation